Georg Oberdieck, Teknisk fysik, KTH

Porträttbild av Georg Oberdieck, pristagare vid KTH.
Porträttbild av Georg Oberdieck, pristagare vid KTH.

Georg Oberdieck får Göran Gustafssonpriset i Teknisk Fysik vid KTH. Han är född 1988 i Göttingen, Tyskland. Han sin doktorsexamen 2015 i matematik vid ETH Zürich. Efter en postdokperiod vid Berkeley och en junior fellow position vid Bonnuniversitetet blev han lektor  vid matematikinstitutionen vid KTH.

Georg beskriver sin forskning på följande sätt: Algebraisk geometri är studiet av geometriska rum som definieras av polynomekvationer, så kallade algebraiska varianter. Vardagen är full av exempel: ellipserna som beskriver planeternas rörelse runt solen, eller de elliptiska kurvorna som används i modern kryptografi. Mitt arbete ligger i enumerativ geometri, som är underområdet för algebraisk geometri som handlar om att räkna geometriska objekt på algebraiska varianter som linjer, kurvor och buntar. Dessa kvantitativa frågor kastar ljus över den detaljerade beskrivningen av ett geometriskt rum och avslöjar ofta överraskande kopplingar till andra områden inom matematiken, särskilt till talteori och representationsteori. Intressant nog finns det också djupa kopplingar till fysik: Fysiska storheter i strängteorin approximeras genom att räkna problem med kurvor på speciella algebraiska varianter. I mitt arbete fokuserar jag på geometrin hos K3-ytor, som är högredimensionella analoger till elliptiska kurvor. Jag fascineras här av kopplingen till modulära former, en vacker typ av funktioner av central betydelse inom talteori och kombinatorik. Denna koppling leder till många spännande resultat på K3-ytor, i synnerhet angående deras enumerativa geometri, deras associerade holomorfa-symplektiska geometri och verifiering av fysiska förutsägelser.

På sin fritid gillar han att vandra, läsa böcker, mest romaner, och utforska Stockholm.

Stefano Crespi, Teknisk fysik, UU

Porträttbild av Stefano Crespi, pristagare vid Uppsala universitet.
Porträttbild av Stefano Crespi, pristagare vid Uppsala universitet.

Stefano Crespi får Göran Gustafssonpriset i Teknisk Fysik vid Uppsala universitet. Han föddes 1989 i Italien där han tog sin doktorsexamen i kemi vid Paviauniversitetet 2017. Han tillbringade två år som postdoktor i Pavia, följd av en fem-månadsperiod vid Regensburguniversitetet (Tyskland) och två och ett halvt år i Groningen (Nederländerna) som Marie Curie-postdoktor vid Nobelpristagaren Ben Feringas laboratorium. Han flyttade till Uppsala Universitet, där han blev biträdande lektor 2022.

Stefano Crespi beskriver sin forskning så här: det som har präglat mina forskningsintressen genom åren är omvandlingen av ljus till kemisk energi. Mitt huvudsakliga fokus är designen av nya fotokemiska reaktioner och att hitta nya sätt att utnyttja ljusstimuli och omvandla dem till mekanisk rörelse på nanometerskala, för att designa nya ljusdrivna molekylära maskiner. Fotoner representerar det perfekta miljövänliga reagenset eftersom de inte lämnar några spår i reaktionsblandningen. Fotonernas energi kan justeras för att matcha det exakta bandgapet mellan molekylernas grund och exciterade tillstånd. Även lokal och tidsupplöst precision kan uppnås med sådana fotokemiska reaktioner av organiska föreningar. Styrning av rörelse på nanometerskala via ljusstimuli kan användas för att modifiera egenskaperna hos smarta material och kan tillämpas inom systemkemi, energilagring och fotofarmakologi.

På min fritid tycker jag om: klättring och spela gitarr

Francesca Pennacchietti, Teknisk fysik, KTH

Porträtt av Alina Sekretareva
Ett porträtt av Francesca Pennacchietti.

Francesca Pennacchietti får Göran Gustafssonpriset i teknisk fysik vid KTH. Hon är född 1987 och växte upp i Italien där hon studerade fysik. Hon tog sin doktorsexamen vid Universitet i Genua och Italienska Institutet för Teknologi, IIT, 2016. Hon jobbar nu som forskare vid avdelningen för biofysik vid KTH.

Francesca Pennacchietti beskriver sin forskning så här: Alla cellulära funktioner är reglerade av underliggande proteininteraktioner som är invecklade i både tid och rum. För att förstå hur dessa biologiska processer sker är det därmed viktigt att mäta antalet proteinkopior som finns på plats i olika biomolekylära aggregat, för flertalet olika proteiner, men dessutom dynamiken bakom dessas formering.

Trots denna tydliga frågeställning saknas det fortfarande avbildningstekniker som kan integrera all denna information, i både tid och rum med tillräcklig upplösning, i enskilda avbildningar. I min forskning har jag utvecklat mikroskopimetoder kapabla att avbilda celler med nanometerprecision, och som specifikt använder fluorescerande proteiner som aktivt kan slås av och på med ljus. Dessa proteiner kan kontrolleras med svaga ljusnivåer, vilket gör dessa tekniker specifikt kapabla till att avbilda levande celler och mäta dynamiska processer.

Jag anser att dessa typer av fluorescerande proteiner som kan kontrolleras med ljus kan utnyttjas för att dessutom få tillgång till ytterligare kvantitativ information i avbildningar med dessa mikroskopimetoder, något som min vidare forskning försöker utveckla och besvara.

På fritiden gillar Francesca att laga mat, vandra och sticka.

Alina Sekretareva, Teknisk fysik, UU

Porträtt av Alina Sekretareva
Porträtt av Alina Sekretareva

Alina Sekretareva får Göran Gustafssonpriset i teknisk fysik vid Uppsala universitet. Hon är född 1989 och uppvuxen i Ryssland där hon tog sin grundexamen 2011 i kemi vid Moskvas statliga universitet. Sin doktorsexamen i tillämpad fysik fick hon 2016 vid Linköping Universitet. Därefter tillbringade hon tre år som postdoktor i USA vid Stanford University. Hon återvände till Sverige till Uppsala Universitet och blev biträdande lektor år 2021.  För att kommersialisera sin forskning startade hon nyligen företaget Bioweronics AB. 

Alina Sekretareva beskriver sin forskning så här: Min forskning syftar till att förbättra förståelsen för elektronöverföringsprocesser inom (bio)elektrokatalysatorer och på elektrod/katalysatorgränssnittet genom att utveckla nya tekniker som möjliggör studier av dessa reaktioner på singelmolekylnivå. Förutom grundläggande aspekter undersöker jag möjligheter att designa nya (bio)elektrokatalytiska enheter baserade på denna nya förståelse. Min forskning överbryggar disciplinerna elektrokemi och (bio)oorganisk kemi och använder en rad elektrokemiska, spektroskopiska och teoretiska tekniker för att adressera grundläggande frågor av relevans för elektrokatalys.

Min nuvarande forskning fokuserar på undersökningar av plasmondriven elektrokatalys på enstaka plasmoniska nanopartiklar och på utveckling av nya enmolekylära elektrokemiska tekniker för studier av enzymatisk katalys.

På fritiden tycker jag om att springa maraton, vandra och åka skidor.

Stephan Steinhauer, Teknisk fysik, KTH

Porträtt av Stephan Steinhauer
Porträtt av Stephan Steinhauer

Stephan Steinhauer får Göran Gustafssonpriset i teknisk fysik vid KTH. Han är född 1986 och uppvuxen i närheten av Wien där han studerade elektroteknik och teknisk fysik. Hans doktorsexamen fick han 2014 vid Vienna University of Technology.

Stephan Steinhauer beskriver sin forskning så här: Nanomaterial, definieras i stort sett som material med minst en geometrisk längd i nanometerskala, dvs. en miljarddel av en meter. Sådana material används som viktiga komponenter inom ett stort antal områden, från elektronik, energiutvinning, katalys och kemiteknik till modern kvantteknik. En hög grad av kontroll över storlek, kristallstruktur, kemisk sammansättning och gränssnittsegenskaper är av yttersta vikt för att uppnå material som är optimerade för sin specifika funktionalitet. Sedan min magisteruppsats har jag varit fascinerad av att studera nanomaterialens unika egenskaper och hur man kan tillverka dem på ett kontrollerat sätt, helst med precision i atomär skala. I synnerhet utvecklar jag metalloxidnanostrukturer för “klassiska” sensoranordningar samt för outforskade tillämpningar inom kvantoptik. I det senare fallet undersöker jag kopparoxidbaserade nanostrukturer som uppvisar elektron-hål-par med höga huvudkvantantal (dvs. Rydberg-excitoner), med målet att utveckla innovativa tillvägagångssätt för kvantsensorteknik med oöverträffad prestanda.

Utanför laboratoriet gillar Stephan racketsporter och är intresserad av att läsa litteratur.

Wei Ouyang, Teknisk fysik, KTH

Porträttbild av Wei Ouyang, pristagare vid KTH.
Porträttbild av Wei Ouyang, pristagare vid KTH.

Wei Ouyang får Göran Gustafsson-priset i Teknisk Fysik vid KTH. Han växte upp i södra Kina och doktorerade 2018 vid Institut Pasteur, Paris, Frankrike. Efter sin doktorsexamen tillbringade Wei fyra år som postdoktor vid SciLifeLab och KTH.

Wei Ouyang beskriver sin forskning så här: Mitt arbete är inriktat på att bygga artificiella intelligenssystem för cell- och molekylärbiologi. Min tvärvetenskapliga grupp, AICell Lab, fokuserar på att skapa datadrivna helcellsmodeller med det ambitiösa målet att konstruera en mänsklig cellsimulator. För att uppnå detta arbetar Wei och hans team på innovationer inom data-analys, modellering och generering med tonvikt på vikten av autonoma system för att insamlandet av enorma mängder högkvalitetsdata som lämpar sig för träning av AI-modeller.

Wei säger vidare att hans grupp håller på att utveckla en helautomatiserad bildframställning, utrustad med flera mikroskop, robotarmar, vätskehanteringsrobotar och automatiska inkubatorer. Han framhåller att AI-modeller körs i realtid för att utöka mikroskopivyer med artificiella etiketter och noteringar, vilket möjliggör återkopplingssignaler för att kontrollera celltillväxt, differentiering och att justera mikroskopinställningar för att optimera fototoxicitet och fånga sällsynta händelser i levande celler.

Det långsiktiga målet med Weis forskning är att skapa storskaliga hela mänskliga cellmodeller genom att kombinera befintliga multi-omics-dataset med nya data som genereras av avbildningssystemet. Han föreställer sig att dessa mänskliga cellmodeller har stor potential inom cellexperimentering i kisel, läkemedelsupptäckande och bidrar till en holistisk och systematisk förståelse av den mänskliga cellen.

Utanför laboratoriet säger Wei att han tycker om att utforska Stockholms skärgård och att åka snowboard på vintern.

Klaus Kröncke, Teknisk fysik, KTH

Porträtt av Klaus Kröncke
Porträtt av Klaus Kröncke

Klaus Kröncke får Göran Gustafssonpriset i Teknisk Fysik vid KTH. Han är född 1986 i Wien och tog sin grundexamen i matematik där 2010. Efter det flyttade han till Tyskland och gjorde sina doktorandstudier vid universitetet i Potsdam där han disputerade 2013. Efter en postdok-period i Regensburg blev han assistant professor i Hamburg 2015. Han började som lektor vid KTH 2022.

Klaus Kröncke beskriver sin forskning så här: Min forskning handlar om differentialgeometri och geometriska partiella differentialekvationer, med särskild fokus på Ricci-flödet och Einsteins mångfald (eng. manifold). Ricci-flödet är en evolutionsekvation för krökta utrymmen som tvingar utrymmet att ändra sin geometri i riktning mot dess Ricci-krökning. På grund av dess analytiska natur kan den ses som en värmeekvation för geometrin. Det tenderar att jämna ut ojämnheter i geometrin men det kan också utveckla singulariteter. Ricci-flödet och förståelsen av dess singulariteter var viktiga ingredienser för klassificeringen av tredimensionella utrymmen som färdigställdes av Grigori Perelman i början av 2000-talet.

De stationära punkterna i Ricci-flödet kallas Einsteins mångfald. Jag är intresserad av beteendet hos Ricci-flödet som ett dynamiskt system i grannskapet av en Einstein-mångfald. I synnerhet är jag intresserad av relationen mellan dynamisk stabilitet och instabilitet hos en given Einstein-mångfald och dess geometriska egenskaper. Jag siktar på att använda dessa kopplingar för att bättre förstå geometrin för singulariteter för Ricci-flödet i fyra och högre dimensioner.

Einsteins mångfald kan också användas för att konstruera rum-tider som uppfyller den berömda Einstein-ekvationen i generell relativitetsteori. Jag undersöker det långvariga beteendet hos dessa och närliggande rum-tider och försöker hitta relationer till stabiliteten hos den underliggande Einstein-mångfalden.

På fritiden tycker Klaus om att spela (jazz) piano, sjunga i kör och upptäcka Stockholms större omgivningar med cykel.

Tove Fall, Medicin, UU

Pristagare 2016
Tove Fall
Foto: Uppsala universitet

Medicin. Tove Fall är född 1979 i Göteborg och växte upp i Huddinge söder om Stockholm. Hon studerade veterinärmedicin vid Sveriges Lantbruksuniversitet (SLU) och tog veterinärexamen 2005. Efter en kortare tid som veterinär vid smådjurssjukhus i Stockholm påbörjade hon sin forskarutbildning vid SLU och försvarade 2009 sin avhandling om diabeteskaraktärisering hos hund. Hon var postdoktor i genetisk epidemiologi vid Institutionen för medicinsk epidemiologi och biostatistik, Karolinska Institutet, 2010-2012. Sedan 2013 har hon verkat vid Institutionen för medicinska vetenskaper vid Uppsala universitet. Hon blev utnämnd till docent i epidemiologi 2013 och innehar sedan 2014 en forskarassistenttjänst i diabetesepidemiologi. Tove leder en forskargrupp som för närvarande består av fyra doktorander.

Tove Fall beskriver sin forskning så här:
Samhället står inför en stor folkhälsoutmaning då förekomsten av typ 2 diabetes ökar kraftigt globalt. År 2035 beräknas över en halv miljard människor leva med sjukdomen. Patienter med diabetes riskerar att drabbas av en lång rad allvarliga följdsjukdomar. Det är därför av största vikt för ett effektivt förebyggande arbete att tidigt kunna identifiera de personer som har högst risk och de mekanismer som leder till diabetes och dess följdsjukdomar.

Jag och min forskargrupp använder oss av stora studiegrupper och detaljerade molekylära analyser för att identifiera de viktigaste molekylära markörerna för diabetesutveckling och de livsstilsfaktorer som bidrar till diabetesutvecklingen. Exempel på de molekylära verktyg vi använder oss av i storskaliga befolkningsstudier är mätning av genetisk variation, mätning av små molekyler i blod och urin som kallas ”metabolomik”, karaktärisering av tarmfloran och mätning av olika proteiner i blodet. I de studier där vi studerar livsstilsfaktorer såsom fetma, antibiotikaanvändning och husdjursinnehav använder vi oss av registerutdrag från svenska nationella register samt information från stora biobanker. Med hjälp av stödet från Göran Gustafssons stiftelse kommer jag kunna föra in nya kompetenser i min forskargrupp och få mer utrymme att bedriva spännande forskning.

Gustafssonpriset till unga forskare vid Kungl tekniska högskolan och Uppsala universitet utgörs av ett forskningsbidrag på sammanlagt 2,5 miljoner kronor, under tre år. Pristagarna är högst 36 år. 

Maurice Duits, KTH

Maurice Duits
Maurice Duits

Teknisk fysik. Maurice Duits växte upp i Nederländerna och studerade tillämpad matematik vid Eindhoven University of Technology, där han tog examen 2004. Han avlade doktorsexamen i matematik 2008 vid KU Leuven i Belgien. Därefter var han Taussky-Todd instructor vid California Institute of Technology. År 2011 kom Duits till KTH där han fått stöd genom ett VR Young Researcher grant. Han utnämndes till universitetslektor i matematik vid Stockholms universitet 2014 och återvände till matematikinstitutionen vid KTH 2015.

Maurice Duits beskriver sin forskning så här:
Många komplexa system i matematik och teoretisk fysik är ofta svåra att studera i detalj. Men när dessa system är mycket stora uppvisar de ofta mönster som inte beror på modellens exakta karakteristiska drag utan bara på vissa faktorer. Samma mönster kan därför uppträda i modeller som kan verka ganska olika – ett fenomen som kallas universalitet. En bärande idé i mitt forskningsområde är att analysera förenklade matematiska modeller som förväntas uppvisa universella mönster vilka också finns i mer komplicerade system, så som energinivåerna i tunga atomer och nollställena till Riemanns zeta-funktion. Genom att använda moderna matematiska tekniker från (komplex) analys hoppas vi att kunna rigoröst visa förväntade universalitetsrelationer, finna nya uppföranden och allmänt få en djupare insikt i universalitetsfenomen. Mycket av min tidigare forskning handlar om utvecklingen av Riemann-Hilbert-metoden, som är ett viktigt verktyg när det gäller att visa universalitet. På senare tid har jag fokuserat på en rigorös analys av fluktuationer i slumpmässiga ytor och gränsytor genom att använda linjär statistik och utveckla en ny matrisbaserad metod.

Gustafssonpriset till unga forskare vid Kungl tekniska högskolan och Uppsala universitet utgörs av ett forskningsbidrag på sammanlagt 2,5 miljoner kronor, under tre år. Pristagarna är högst 36 år. 

Andreas Hellander, UU

Andreas Hellander
Andreas Hellander

Teknisk fysik. Andreas Hellander är född 1982 i Arjeplog. Han avlade studentexamen i Arjeplog 2000, blev civilingenjör i molekylär bioteknik vid Uppsala Universitet 2006 och disputerade i beräkningsvetenskap 2011. Efter två år som postdoktor vid University of California Santa Barbara tillträdde han 2013 en tjänst som lektor i beräkningsvetenskap vid avdelningen för beräkningsvetenskap, Institutionen för informationsteknologi, Uppsala universitet. Han är sedan 2014 docent i beräkningsvetenskap.

Andreas Hellander beskriver sin forskning så här:
Ett tema i min forskning i beräkningsvetenskap och systembiologi är utvecklandet av noggranna och effektiva metoder för att simulera biokemiska reaktionsnätverk med stokastiska modeller. Stokastiska modeller har i beräkningssystembiologin visat sig vara mer användbara än traditionellt använda differentialekvationer när man vill beskriva cellulära system med väldigt låga antal av nyckelproteiner så som transkriptionsfaktorer. Med kvantitativa modeller kan vi generera hypoteser för hur molekylära nätverk fungerar och hur de skulle reagera på olika typer av extern påverkan, och vi kan studera teoretiska egenskaper hos olika cellulära kontrollsystem. Den inneboende skalseparationen som förekommer i sådana system gör simuleringar mycket tidskrävande, och en stor del av min tidigare forskning har handlat om så kallade multiskalmetoder för att konstruera mer effektiva algoritmer. I min grupp är beräkningsmjukvara en central del av verksamheten. Genom öppen källkod kan de senaste algoritmerna snabbare nå potentiella användare och på så sätt snabbare möjliggöra ny domänspecifik forskning. Ofta är det dock ett stort steg från öppen källkod till generellt användbar mjukvara. På senare tid har molnteknologi gjort det enklare både att utveckla och leverera mjukvara till andra forskare. Vi har nyligen demonstrerat hur man kan utveckla molnmjukvara som gör även storskaliga beräkningsexperiment mer lättillgängliga, mer skalbara och lättare att reproducera. Det senare är ett ofta ett problem i praktiken för forskning som bygger på nya avancerade algoritmer och storskaliga beräkningar. Tack vare priset från Göran Gustafssons stiftelse får jag möjlighet att expandera min forskning i nya riktningar. I ett nytt projekt ska vi undersöka möjligheten att utveckla smarta stödsystem för modellutforskning. Baserat på molnteknologi och metodik från maskininlärning hoppas vi utveckla serviceorienterade mjukvarukomponenter som möjliggör mycket mer interaktiva och effektiva sätt att utforska biologiska system med hjälp av modellering och simulering än vad som är möjligt idag.

Gustafssonpriset till unga forskare vid Kungl tekniska högskolan och Uppsala universitet utgörs av ett forskningsbidrag på sammanlagt 2,5 miljoner kronor, under tre år. Pristagarna är högst 36 år.