Jonas Sellberg, KTH

Foto: Jonas Sellberg

Teknisk fysik. Jonas Sellberg är född 1985 i Stockholm. Han tog studenten 2004 från Norra Real och läste sedan civilingenjörsprogrammet i kemi och kemiteknik på KTH med inriktning mot organisk och fysikalisk kemi, där han tog examen 2009 efter utbytesår vid University of Tokyo och sommarutbyte vid Princeton University i USA. Han avlade doktorsexamen i kemisk fysik 2014 vid Stockholms universitet och fick Sigrid Arrhenius stipendium för ett framstående forskningsarbete efter tre år som gästforskare 2010-2013 vid SLAC National Accelerator Laboratory i Kalifornien. Under 2014-2015 var han postdoktor vid Uppsala universitet med fokus på biofysik. År 2016 återvände han till KTH som biträdande lektor vid Institutionen för tillämpad fysik.

Jonas Sellberg beskriver sin forskning så här: Ljuskällor som producerar koherent ljus har förändrat vårt samhälle sedan lasern uppfanns på 1960-talet. Lasrar är idag involverade i varje telefonsamtal och epost. Lasrar används också för att sekvensera DNA och behandla synfel på någon minut. För röntgenljus, d.v.s. ljus med väldigt kort våglängd som är jämförbar med avstånden mellan atomer, har uppfinningen av liknande ljuskällor dröjt. Det var först år 2005 som världens första mjukröntgenlaser togs i bruk vid DESY i Tyskland, och år 2009 blev världens första hårdröntgenlaser tillgänglig för användare vid SLAC i USA. De ultrasnabba röntgenpulserna med extremt hög intensitet har sedan dess använts av forskare världen över för att avbilda celler och virus, strukturbestämma proteiner och kartlägga elektroniska och magnetiska egenskaper hos atomer, molekyler och nanostrukturerade material. Min forskning har varit tätt sammankopplad med utvecklingen av röntgenlasern och jag har sedan 2010 varit involverad i över 40 olika experiment vid röntgenlaseranläggningar på de tre kontinenter där de hittills har byggts. Även om tillämpningarna har varierat så är experimenten huvudsakligen interdisciplinära och i gränslandet mellan fysik, kemi och biologi. Ofta handlar det om att få en inblick i kemiska och fysikaliska processer som sker på en ultrasnabb tidsskala jämförbar med tiden det tar för ljus att färdas tjockleken av ett tunt hårstrå. Jag har till exempel varit delaktig i att mäta strukturen och dynamiken av vätebindningar i underkylt vatten ned till -46 °C, avbilda virus och celler på nanonivå, och förstå hur den elektroniska strukturen förändrar sig under kemiska reaktioner, så som när fotosystem omvandlar vatten till syrgas och när kolmonoxid oxideras till koldioxid med hjälp av en katalysator. Samarbete är en central del av min forskning och jag är idag aktiv i den grupp av forskare som utvecklar en svensk röntgenlaser. På sikt har det potentialen att uppnå varje molekylfysikers dröm – att spela in filmer av makromolekylära kemiska reaktioner med atomär upplösning.

Gustafssonpriset till unga forskare vid Kungl tekniska högskolan och Uppsala universitet utgörs av ett forskningsbidrag på sammanlagt 2,5 miljoner kronor, under tre år. Pristagarna är högst 36 år. 

David Rydh, KTH

David Rydh

Teknisk fysik. David Rydh är född i Morgongåva 1980. Han tog studenten 1999 på Karlbergsgymnasiet i Åmål och började därefter på KTH Teknisk fysik med inriktning mot matematik, där han tog examen 2003. Han avlade sedan doktorsexamen i matematik 2008 vid KTH. Under 2009-2010 var han postdoktor vid UC Berkeley på anslag från Vetenskapsrådet. Därefter återvände han till matematikinstitutionen på KTH, först en kort tid som forskarassistent, sedan som biträdande lektor 2011 och nu universitetslektor (och docent) 2015. Rydh fick Göran Gustafssonpriset för unga forskare 2011 och Wallenbergpriset i matematik 2015.

David Rydh beskriver sin forskning så här: I matematik, liksom i naturvetenskap, är det viktigt att systematisera och klassificera. Ett välkänt exempel från antiken är klassificeringen av regelbundna polyedrar: de platonska kropparna. I mitt forskningsområde, algebraisk geometri, studerar man geometriska objekt som är definierade av polynomekvationer. Ett moduliproblem innebär att klassificera sådana geometriska objekt. Det kan till exempel vara linjer i ett plan eller kurvor. Till ett sådant problem söker vi en geometrisk lösning, ett modulirum, där varje punkt i modulirummet motsvarar en klass av objekten. Ofta har objekten man klassificerar symmetrier. För att då kunna lösa moduliproblemet behöver vi låta modulirummet vara en så kallad stack som har en mer komplicerad geometrisk struktur. En stor del av min forskning behandlar moduliproblem och teorin för stackar i algebraisk geometri. Ett viktigt verktyg som jag har utvecklat är Tannakadualitet som knyter samman teorin för algebraiska stackar med en till synes helt annan del av matematiken, monoidala kategorier. Med Tannakadualitet har jag löst moduliproblem som tidigare var olösta och givit en precis beskrivning av den lokala geometriska strukturen hos algebraiska stackar. Ett annat viktigt verktyg jag utvecklat är stackiga uppblåsningar som på ett kontrollerat sätt modifierar stackar. Det visar sig att alla slags modifikationer går att beskriva med hjälp av stackiga uppblåsningar. Eftersom de senare är mycket explicita blir alla modifikationer hanterbara.

Gustafssonpriset till unga forskare vid Kungl tekniska högskolan och Uppsala universitet utgörs av ett forskningsbidrag på sammanlagt 2,5 miljoner kronor, under tre år. Pristagarna är högst 36 år. 

Ilaria Testa, KTH

Ilaria Testa
Ilaria Testa

Teknisk fysik. Ilaria Testa är född i Genua, Italien 1981. Hon avlade examen i fysik samt doktorsexamen i biofysik vid Università di Genova år 2009. Efter postdoktorsvistelse 2009-2014 vid Department of Nanobiophotonics, Max Planck Institute for Biophysical Chemistry Göttingen (under ledning av nobelpristagaren i kemi 2014, Stefan Hell) flyttade Ilaria Testa till Science for Life Laboratory (SciLifeLab) och blev 2015 biträdande lektor vid institutionen för Tillämpad fysik, KTH.

Ilaria Testa beskriver sin forskning så här:Medan traditionell ljusmikroskopis spatiala upplösning begränsas till 200 nm av diffraktionsgränsen så fokuserar min forskning på utveckling av nya typer av mikroskop som möjliggör avbildning på nanonivå med en upplösning av 10-20 nm. Bland annat skapade jag en mikroskopiplattform baserad på stokastisk växling av enstaka fluorescenta molekyler med den unika möjligheten att separera dem med hjälp av ratiometrisk spektral detektion. Jag rörde mig sedan mot forskningsområdet som behandlar avbildning av levande celler och var en av pionjärerna av RESOLFT-mikroskopi, en metod som lägger vikt vid att vara minimalt invasiv för att kunna observera levande biologiska system med ej tidigare sedd spatial upplösning. Tillsammans med ett interdisciplinärt team av biologer och fysiker lyckades jag med att tillämpa RESOLFT-konceptet i levande nervceller och till och med vävnader genom att använda olika typer av fluorescerande protein. Vår studie som publicerades i Nature visade för första gången RESOLFT-mikroskopis potential för avbildning av levande celler med precision på nanoskala och minimala belysningsintensiteter. RESOLFT blev också framgångsrikt tillämpat för att avbilda dendritiska utskotts dynamik i levande hjärnvävnad, över flera timmars observation. Nyligen har jag utvecklat denna plattform för avbildning i flera färger samt observation av levande människoceller som var endogeniskt märkta med fluoroforer genom CRISP-Cas9-systemet. Vi fokuserar nu på utvecklingen av nästa generations mikroskop som kommer att möjliggöra precis identifiering av biologiska molekyler beroende på deras positioner, mängd och dynamik, allt i deras naturliga miljö. Speciell fokus kommer att läggas vid att undersöka den spatiala organisationen och funktionaliteten av nervcellsproteiner i relevanta biologiska system, allt på en nanoskala.

Gustafssonpriset till unga forskare vid Kungl tekniska högskolan och Uppsala universitet utgörs av ett forskningsbidrag på sammanlagt 2,5 miljoner kronor, under tre år. Pristagarna är högst 36 år. 

Andreas Hellander, UU

Andreas Hellander
Andreas Hellander

Teknisk fysik. Andreas Hellander är född 1982 i Arjeplog. Han avlade studentexamen i Arjeplog 2000, blev civilingenjör i molekylär bioteknik vid Uppsala Universitet 2006 och disputerade i beräkningsvetenskap 2011. Efter två år som postdoktor vid University of California Santa Barbara tillträdde han 2013 en tjänst som lektor i beräkningsvetenskap vid avdelningen för beräkningsvetenskap, Institutionen för informationsteknologi, Uppsala universitet. Han är sedan 2014 docent i beräkningsvetenskap.

Andreas Hellander beskriver sin forskning så här:
Ett tema i min forskning i beräkningsvetenskap och systembiologi är utvecklandet av noggranna och effektiva metoder för att simulera biokemiska reaktionsnätverk med stokastiska modeller. Stokastiska modeller har i beräkningssystembiologin visat sig vara mer användbara än traditionellt använda differentialekvationer när man vill beskriva cellulära system med väldigt låga antal av nyckelproteiner så som transkriptionsfaktorer. Med kvantitativa modeller kan vi generera hypoteser för hur molekylära nätverk fungerar och hur de skulle reagera på olika typer av extern påverkan, och vi kan studera teoretiska egenskaper hos olika cellulära kontrollsystem. Den inneboende skalseparationen som förekommer i sådana system gör simuleringar mycket tidskrävande, och en stor del av min tidigare forskning har handlat om så kallade multiskalmetoder för att konstruera mer effektiva algoritmer. I min grupp är beräkningsmjukvara en central del av verksamheten. Genom öppen källkod kan de senaste algoritmerna snabbare nå potentiella användare och på så sätt snabbare möjliggöra ny domänspecifik forskning. Ofta är det dock ett stort steg från öppen källkod till generellt användbar mjukvara. På senare tid har molnteknologi gjort det enklare både att utveckla och leverera mjukvara till andra forskare. Vi har nyligen demonstrerat hur man kan utveckla molnmjukvara som gör även storskaliga beräkningsexperiment mer lättillgängliga, mer skalbara och lättare att reproducera. Det senare är ett ofta ett problem i praktiken för forskning som bygger på nya avancerade algoritmer och storskaliga beräkningar. Tack vare priset från Göran Gustafssons stiftelse får jag möjlighet att expandera min forskning i nya riktningar. I ett nytt projekt ska vi undersöka möjligheten att utveckla smarta stödsystem för modellutforskning. Baserat på molnteknologi och metodik från maskininlärning hoppas vi utveckla serviceorienterade mjukvarukomponenter som möjliggör mycket mer interaktiva och effektiva sätt att utforska biologiska system med hjälp av modellering och simulering än vad som är möjligt idag.

Gustafssonpriset till unga forskare vid Kungl tekniska högskolan och Uppsala universitet utgörs av ett forskningsbidrag på sammanlagt 2,5 miljoner kronor, under tre år. Pristagarna är högst 36 år. 

Chong Qi, KTH

Pristagaren Chong Qi
Chong Qi

Teknisk fysik. Chong Qi är född 1983 i Jinan, Kina. Han avlade doktorsexamen vid Pekings universitet 2009 och kom till KTH genom stöd av Vetenskapsrådets bidrag till anställning som postdoktor i Sverige. Han fortsatte sin forskning på KTH med stöd från kärnfysikgruppen på KTH och ett projektbidrag för unga forskare frän Vetenskapsrådet. Sedan 2014 är han biträdande lektor vid Institutionen för fysik, KTH. Qi blev docent 2015 inom området teoretisk kärnfysik.

Chong Qi beskriver sin forskning så här:
Som teoretiker arbetar jag främst med modeller av den växelverkan som uppstår mellan partiklar i kvantmekaniska mångkropparsystem. Forskningen syftar till att utveckla nya metoder för atomkärnan för att beskriva hur komplexa skeenden uppstår ur enkla komponenter och hur komplexa krafter kan ge upphov till enkla rörelser. Atomkärnan skapas i våldsamma processer i universum. För att kunna förstå till exempel varför det finns så lite guld och så mycket kisel på jorden krävs kunskap om exotiska atomkärnor, som har mycket kort livslängd. Den senaste forskningen avser att beskriva egenskaper och uppbyggnad av exotiska och extremt kortlivade atomkärnor med helt andra relativa sammansättningar av protoner och neutroner än de stabila och långlivade atomkärnorna. Nära de gränserna för existens har man funnit att kärnmaterian kan ha mycket ovanliga egenskaper. I dessa kärnor kan man ha en växelverkan mellan bundna och obundna tillstånd liksom att de tillfälligt kan befinna sig i obundna tillstånd. Man kan också med förfinad experimentell teknik nå tunga kärnor med samma antal protoner och neutroner, vilka har visat oväntat tecken på en ny struktur, där parvisa neutron-proton-korrelationer dominerar. Dessutom kan de här kärnorna genomgå nya former av sönderfall som vi studerar med vår formalism. Traditionella kärnmodeller, utvecklade för att beskriva kärnor i närheten av stabilitetslinjen, kan inte beskriva fenomen som händer i obundna, instabila tillstånd. Det övergripande målet för mitt Göran Gustafsson-projekt är att tillämpa modellen som jag har utvecklat för att studera de sällsynta nedbrytningsprocesserna. Arbetet har hittills resulterat i över 70 vetenskapliga publikationer. Jag har handlett två doktorander och en master-student.

Gustafssonpriset till unga forskare vid Kungl tekniska högskolan och Uppsala universitet utgörs av ett forskningsbidrag på sammanlagt 2,5 miljoner kronor, under tre år. Pristagarna är högst 36 år. 

Sascha Ott, Teknisk fysik, UU

Pristagare 2010
Sascha Ott

Sascha Ott är född 1973 i Heilbronn, Tyskland. Han studerade kemi vid universitetet i Freiburg, Tyskland, tog en Bachelor of science vid Flinders University of South Australia, och en Ph D 2002 vid University College London. Efter att ha varit postdoktor vid Stockholms universitet hos prof. Björn Åkermark och prof. Licheng Sun fick Sascha Ott 2004 en forskartjänst vid Uppsala universitet, följt 2006 av en forskarassistenttjänst och 2010 av en rådsforskartjänst från Vetenskapsrådet i oorganisk syntes.

Ott beskriver sin forskning så här:
Under de senaste decennierna har det gjorts mycket stora framsteg inom organisk elektronik och fotonik. Marknaden för elektronikprodukter baserade på organiska material har uppskattas till över 30 miljarder dollar år 2015. Det är upptäckten av ledande polymerer och elektroluminiscens baserad på små organiska molekyler under 1980- och 1990-talen som ger den vetenskapliga grunden för området. Det mesta av dagens forskning inom organisk elektronik görs med traditionell kemi. Genom kemisk syntes har man tillgång till hela Periodiska systemet och kan utnyttja egenskaper hos grundämnen som ännu inte kommit till användning inom molekylär elektronik. Vi har nyligen initierat ett projekt som, uttryckt i vetenskapliga termer, handlar om icke-traditionella pi-konjugerade topologier, där fosfor infogas i pi-konjugerade system.

I dessa system studerar vi föreningarnas elektroniska egenskaper och deras växelverkan med ytor, för att kunna utnyttja dem i organiska tunnfilmstransistorer. Projektet kräver kontakter mellan organisk kemisk syntes, ytfysik och komponenttillverkning. I vårt fall sker det genom samarbete med det Uppsala-baserade nätverket U3MEC inom molekylär elektronik samt med en forskargrupp vid Department of Chemical Engineering, Stanford University, som arbetar med komponenter. Vår strävan är att finna nya vägar inom organisk elektronik genom att våra grundvetenskapliga studier av molekyler leder till praktiska tillämpningar.

Carlota Canalias, Teknisk fysik, KTH

Pristagare 2010
Carlota Canalias

Carlota Canalias är född 1975 i Barcelona, Spanien. Efter studier i fysik vid Universitat Autonòma de Barcelona flyttade hon 1999 till Sverige för att påbörja forskarstudier. År 2005 avlade hon doktorsexamen i laserfysik vid KTH, där hon fortsatte som forskare fram till 2007. Efter en tid i näringslivet återvände hon 2008 till KTH och laserfysik, nu som forskarassistent på Vetenskapsrådet.

Canalias beskriver sin forskning så här:
Min forskning handlar om framställning och studier av nanodomänstrukturer i ferroelektriska kristaller och deras användning i optiska tillämpningar. Den kunskapen skall användas för att skapa nya typer av optiska komponenter, bl.a. baserade på motpropagerande optiska fält, elektro-optiska effekter och plasmon-polariton-koppling. Utveckling av nanostrukturerade ferroelektriska kristaller kräver grundläggande forskning om hur domäner växer fram i ferroelektriska material, och vilka eventuella fysikaliska och materialrelaterade begränsningar finns.

En viktig fråga är egenskaperna hos den så kallade domänväggen, det vill säga det mycket smala området som ligger mellan två domäner, och vars egenskaper kan vara extremt viktiga för hur hela strukturen beter sig. I domänväggen kan, till exempel, kristallsymmetrin förändras lokalt, vilket kan leda till intrikata och komplexa ickelinjära optiska effekter. När två små domäner växer fram nära varandra påverkar de varandra. Den dynamiken vill vi försöka beskriva och förstå.

Charlotte Platzer-Björkman, Teknisk fysik, UU

Pristagare 2011
Charlotte Platzer-Björkman

Charlotte Platzer-Björkman är född i Uppsala 1976, avlade studentexamen vid Katedralskolan 1995, blev civilingenjör i Teknisk Fysik vid Uppsala Universitet 2001 och teknologie doktor i elektronik vid Uppsala Universitet 2006. Hon har tillbringat ett år vid Institutt for Energiteknikk utanför Oslo 2009, och är sedan december 2010 docent samt biträdande lektor vid avdelningen för Fasta Tillståndets Elektronik, Uppsala Universitet.

Platzer-Björkman beskriver sin forskning så här:
Min forskning rör tunnfilmsmaterial med användning i solceller. För att solceller ska kunna bidra till vår energiförsörjning i stor skala krävs att de är billiga att tillverka och samtidigt effektiva och stabila. Billig tillverkning innebär material med många defekter, vilket som regel leder till elektriska förluster. De material som är mest intressanta för solceller är de som visar låga förluster trots stor mängd defekter av olika slag. I min forskning fokuserar jag på hur materialegenskaper och gränsytor påverkar funktion och förluster hos solceller. Jag har till största del arbetat med Cu(In,Ga)Se2, kallat CIGS, men även med metallhydrider och multikristallina kiselsolceller under mitt år i Norge.

Jag har också intresserat mig för hur ljusinducerade förändringar av elektriska egenskaper hos vissa material påverkar solceller. Sedan 2010 arbetar jag med ett nytt lovande solcellsmaterial, Cu2ZnSn(S,Se)2, kallat CZTS, som inte innehåller några sällsynta eller skadliga grundämnen. Målet för forskningen är att kontrollera filmtillväxt och att förstå hur filmkvalitet, sammansättning, segregering av sekundärfaser samt gränsytor mot kontaktmaterial påverkar optiska och elektriska förluster i dessa solceller.

Henrik Hult, Teknisk fysik, KTH

Pristagare 2011
Henrik Hult

Henrik Hult är född i Stockholm 1975, avlade studentexamen vid Åsö Gymnasium 1994, blev civilingenjör i Teknisk Fysik vid KTH 2000 och teknologie doktor i Matematisk Statistik vid KTH 2003. Han har tillbringat ett år som postdoktor vid Köpenhamns Universitet 2004,  1 ½  år som postdoktor vid Cornell University 2005-06, och två år som Assistant Professor vid Brown University 2006-08. Sedan juli 2008 är han lektor vid avdelningen för Matematisk Statistik, KTH.

Hult beskriver sin forskning så här:
Min forskning syftar till att bestämma sannolikheten för extrema händelser i stokastiska system, samt att beskriva hur dessa händelser troligast uppkommer. Som exempel kan nämnas sannolikheten att ett datanätverk överbelastas av inkommande trafik, sannolikheten för stora försäkringsskador som ruinerar ett försäkringsbolag eller sannolikheten för extrema kursrörelser på en finansiell marknad. Då dessa sannolikheter är svåra att beräkna analytiskt används i huvudsak asymptotiska approximationer eller Monte Carlo simulering.

I båda fallen är det väsentligt att beskriva det mest sannolika sättet på vilket den extrema händelsen uppkommer. Till exempel, är det troligast att det är många små bidrag som konspirerar till att orsaka händelsen eller är det troligast att enskilda extrema chocker orsakar händelsen?  Vi har visat att i system med tjocksvansade fördelningar är det ofta troligast att en stor chock (t.ex. en stor datafil, en katastrofskada, eller en kraftig prisrörelse) är grundorsaken till extrema händelser. Vi beskriver också hur chocken fortplantar sig i systemet för att orsaka händelsen. Resultaten formuleras inom teorin för stora avvikelser.

Via stödet från Göran Gustafssons Stiftelse kommer vi att studera Monte Carlo-simulering som  beräkningsmetod av extrema händelser.  Då simuleras systemet många gånger och man beräknar frekvensen för händelsen, vilket ger en skattning av sannolikheten. Ett problem är att det kan behövas ett mycket stort antal simuleringar för noggrann beräkning av sannolikheten, och beräkningstiden kan bli så lång att algoritmen blir obrukbar. För att snabba upp beräkningstiden utnyttjar man specifika egenskaper hos systemet för att styra simuleringarna till de områden som är relevanta för händelsen.

Styrningen av simuleringarna baseras på en dynamisk beskrivning av det mest sannolika sättet händelsen inträffar. Asymptotisk analys i form av stora avvikelser för det stokastiska systemet och för de empiriska mått som resulterar från simuleringen karaktäriserar den information om systemet som behövs för att konstruera effektiva algoritmer. Min forskning syftar till att ta fram generella verktyg för hur man konstruerar och analyserar effektiva simuleringsalgoritmer. Teknikerna är användbara i en mängd tillämpningar.

Axel Målqvist, Teknisk fysik, UU

Pristagare 2012
Axel Målqvist

Axel Målqvist är född 1978 i Brämhult. Han avlade studentexamen vid Eksjö gymnasium 1997, blev civilingenjör i teknisk fysik 2001 och teknologie doktor i tillämpad matematik vid Chalmers Tekniska högskola 2005. Efter doktorsexamen tillbringade han två år som postdoc vid Colorado State University och University of California i San Diego. Därefter anställdes han som forskarassistent vid institutionen för informationsteknologi, Uppsala universitet, och är sedan 2008 biträdande lektor vid samma institution. Målqvist blev 2010 docent i beräkningsvetenskap.

Målqvist beskriver sin forskning så här:
Inom beräkningsvetenskapen försöker vi hitta tillförlitliga och effektiva numeriska metoder för att lösa de ekvationer som beskriver vår omvärld. Ämnet är naturligt interdisciplinärt och spänner över tillämpad matematik, numerisk analys, datalogi, samt otaliga tillämpningsområden. Jag har arbetat med att numeriskt lösa differentialekvationer, vars data varierar över många skalor i rummet. Exempel på problem som leder till sådana ekvationer är grundvattenflöde, flöde i oljereservoarer samt koldioxidlagring. I dessa tillämpningar är datorsimulering nödvändig för att kunna fatta kritiska beslut. Variationen över många skalor innebär svårigheter när man vill utforma tillförlitliga numeriska algoritmer. Det krävs adaptiva algoritmer där parallella beräkningar på finare skalor används för att berika lösningsrummen på de grövre skalorna.

Via stödet från Göran Gustafssons stiftelse kommer jag att kunna fördjupa mitt arbete inom numeriska metoder för koldioxidlagringsproblem. En viktig komponent blir att ta hänsyn till den stora osäkerheten i data som är typisk för denna tillämpning. Arbetet kommer att ske i samarbete med institutionen för geovetenskap vid Uppsala universitet, som har tillgång till data och har stor erfarenhet av modellering. Målet är att göra beräkningarna snabbare och mer tillförlitliga så att beslut som fattas baserade på beräkningarna (t ex om en plats är lämplig för lagring) blir bättre underbyggda.