Maria Feletta, Medicin, UU

Pristagare 2010
Maria Ferletta

Maria Ferletta är född och uppvuxen i Rönninge utanför Stockholm, tog studenten 1992 vid Huddinge gymnasium, började därefter på kemiingenjörsprogrammet vid Uppsala universitet, och blev 1997 Fil. Mag. i biologi vid Uppsala universitet. Hon disputerade 2002 vid Uppsala universitet i biologi med inriktning mot molekylärcellbiologi, efter att ha delat sin doktorandtid mellan Tekniska-Naturvetenskapliga fakulteten vid Uppsala universitet och Medicinska fakulteten vid Lunds universitet. Efter disputationen arbetade hon en kortare period vid Institutionen för Cell- och Utvecklingsbiologi vid Lunds universitet. Sedan 2002 är Maria Ferletta anställd på institutionen för Genetik och Patologi vid Uppsala universitet, med finansiering från bl.a. Barncancerfonden och Åke Wibergs stiftelse.

Ferletta beskriver sin forskning så här:

Min forskning är inriktad på de grundläggande cell- och molekylärbiologiska mekanismer som ligger bakom uppkomsten av hjärntumörer. De terapeutiska behandlingarna för höggradiga hjärntumörer, så som gliom, är idag ineffektiva, och medelöverlevnaden kan vara mindre än ett år. Det finns flera indikationer på att hjärntumörer uppkommer från s.k. cancerstamceller, vilka kan självförnyas och ge upphov till andra cancerstamceller, likväl som en prolifererande och differentierande cellavkomma. Vissa av cancerstamcellerna förblir omogna och är ”motorn” till tumören. Dessa celler är svårare att komma åt vid behandlig, och kan därför fortsätta att hålla tumören vid liv. I mitt projekt studerar jag om det är möjligt att behandla hjärntumörer genom att förhindra cancerinitierande celler att proliferera, eller genom differentiering av tumörcellerna. Vi har bl.a. funnit att gliom består av minst två olika celltyper.

Den ena gruppen celler uttrycker Sox2, GFAP och Sox21 och saknar uttryck av fibronectin, medan den andra gruppen saknar uttryck av Sox2, GFAP och Sox21, men uttrycker fibronectin. Är det då möjligt att förhindra tumörutvecklingen eller att initiera utmognad av tumörcellerna genom att t.ex. blockera Sox2? Detta studerar vi både in vivo och in vitro med molekylärbiologiska metoder samt genom analys av humanvävnad. Fyndet att Sox2 är nödvändigt för den tilltagande tumörtillväxten gör Sox2, eller proteiner nedströms om Sox2, till mycket intressanta kandidater för nya terapeutiska behandlingar av hjärntumörer.

Pernilla Bjerling, Medicin, UU

Stöd till medicinsk forskning vid Uppsala universitet

Göran Gustafssons stiftelse stöder medicinsk forskning vid Uppsala universitet, främst genom att under en treårsperiod ge ett väsentligt bidrag till lönen för unga forskare på docentnivå. Nya mottagare av detta stöd är Pernilla Bjerling och Maria Ferletta.

Pristagare 2010
Pernilla Bjerling

Pernilla Bjerling är född 1967 i Sundsvall, och flyttade 1989 till Uppsala för att studera molekylärbiologi, varpå följde forskning om genuttryck i jäst, först vid Uppsala universitet och senare vid Köpenhamns universitet, där hon 1998 disputerade i genetik. Därefter fortsatte Pernilla Bjerling sin forskning i Karl Ekwalls grupp på Karolinska Institutet/Södertörns Högskola. År 2003 erhöll Pernilla Bjerling en forskarassistenttjänst vid Vetenskapsrådet, och kunde därmed etablera sin egen forskningsprofil, först vid Södertörns högskola och sedan 2004 vid Uppsala universitet.

Bjerling beskriver sin forskning så här:
DNA-sekvensen för hela det mänskliga genomet är nu känd, och därmed känner man alla människans gener. Det är nu en stor utmaning att undersöka funktionen av alla dessa gener. En annan viktig aspekt är att förstå regleringen av generna; hur stängs de av och hur slås de på? Min forskning syftar till att förstå grundläggande mekanismer i dessa processer i jäst. Framförallt är jag intresserad av hur packningen och organisationen av genomet påverkar genuttryck. Fördelen med att göra dessa studier i jäst är att det är så mycket enklare att manipulera genomet och märka in vissa delar, som sedan studeras i mikroskop.

Dessutom kan vi relativt enkelt sätt mutera proteiner, som är viktiga för genomets organisation, och studera effekten av dessa mutationer. Vi har bland annat funnit drastiska förändringar av packningen av gener som slås på när jästens näringstillgång stryps. Studierna av den förhållandevis enkla organismen jäst kan hjälpa oss att förstå en mer komplicerad varelse som människan.

Sascha Ott, Teknisk fysik, UU

Pristagare 2010
Sascha Ott

Sascha Ott är född 1973 i Heilbronn, Tyskland. Han studerade kemi vid universitetet i Freiburg, Tyskland, tog en Bachelor of science vid Flinders University of South Australia, och en Ph D 2002 vid University College London. Efter att ha varit postdoktor vid Stockholms universitet hos prof. Björn Åkermark och prof. Licheng Sun fick Sascha Ott 2004 en forskartjänst vid Uppsala universitet, följt 2006 av en forskarassistenttjänst och 2010 av en rådsforskartjänst från Vetenskapsrådet i oorganisk syntes.

Ott beskriver sin forskning så här:
Under de senaste decennierna har det gjorts mycket stora framsteg inom organisk elektronik och fotonik. Marknaden för elektronikprodukter baserade på organiska material har uppskattas till över 30 miljarder dollar år 2015. Det är upptäckten av ledande polymerer och elektroluminiscens baserad på små organiska molekyler under 1980- och 1990-talen som ger den vetenskapliga grunden för området. Det mesta av dagens forskning inom organisk elektronik görs med traditionell kemi. Genom kemisk syntes har man tillgång till hela Periodiska systemet och kan utnyttja egenskaper hos grundämnen som ännu inte kommit till användning inom molekylär elektronik. Vi har nyligen initierat ett projekt som, uttryckt i vetenskapliga termer, handlar om icke-traditionella pi-konjugerade topologier, där fosfor infogas i pi-konjugerade system.

I dessa system studerar vi föreningarnas elektroniska egenskaper och deras växelverkan med ytor, för att kunna utnyttja dem i organiska tunnfilmstransistorer. Projektet kräver kontakter mellan organisk kemisk syntes, ytfysik och komponenttillverkning. I vårt fall sker det genom samarbete med det Uppsala-baserade nätverket U3MEC inom molekylär elektronik samt med en forskargrupp vid Department of Chemical Engineering, Stanford University, som arbetar med komponenter. Vår strävan är att finna nya vägar inom organisk elektronik genom att våra grundvetenskapliga studier av molekyler leder till praktiska tillämpningar.

Lina Emilsson, Medicin, UU

Stöd till medicinsk forskning vid Uppsala universitet

Göran Gustafssons stiftelse stöder medicinsk forskning vid Uppsala universitet, främst genom att under en treårsperiod ge ett väsentligt bidrag till lönen för unga forskare på docentnivå. Ny mottagare av detta stöd är Lina Emilsson.

Pristagare 2011
Lina Emilsson

Lina Emilsson är född 1973 i Norrtälje. Efter studentexamen och språkstudier i Belgien började hon 1995 att studera vid Uppsala universitet. Där bedrev hon också forskarstudier vid institutionen för Genetik och Patologi och disputerade 2005 på en avhandling om Alzheimers sjukdom. Efter disputation har hon varit delaktig i flera vetenskapliga projekt med bas vid Uppsala universitet, och arbetat som postdoktor vid institutionerna för Fysiologi och Utvecklingsbiologi samt Genetik och Patologi. Sedan 2007 är Lina Emilsson verksam vid institutionen för Neurovetenskap i gruppen för Genetisk Utvecklingsbiologi. Hon har finansierats av Svenska Sällskapet för Medicinsk Forskning och Hjärnfonden. Nu etablerar hon sin egen forskning för att förstå samspelet mellan nervceller och hur dessa påverkar hjärnans funktion vid neurodegeneration, missbruk samt psykisk sjukdom

Emilsson beskriver sin forskning så här:
Jag är intresserad av att förstå hur högre hjärnfunktioner, så som förmågan att tänka logiskt, minnas och lära, fungerar på gen- och nervcellsnivå, samt hur hjärnans molekylära balans förändras vid sjukdom. Detta undersöker jag ur ett prekliniskt och kliniskt perspektiv genom att kombinera studier av djurmodeller med undersökningar baserade på patienter med en specifik diagnostiserad hjärnsjukdom. De senaste åren har jag drivit ett projekt där vi har identifierat en molekyl (ett protein) som påverkar belöningssystemet i hjärnan. Vi har visat att om detta protein saknas hos möss så leder det till en ökad känslighet för dopamin-frisättande (”belönings-”) droger, som amfetamin, kokain och alkohol.

Humangenetiska studier har dessutom identifierat genetiska förändringar av detta protein hos patienter som lider av alkoholism. Via stöd från Göran Gustafssons Stiftelse kommer jag nu att fortsätta att studera belöningssystemet, men även andra hjärnregioner och nervcellskretsar som är viktiga för kognitiva och emotionella egenskaper. Min forskning har betydelse för att ge ökad kunskap om hur specifika gener/proteiner påverkar funktionen hos nervceller och nervcellskretsar och vad som händer med dessa då en person drabbas av sjukdom.

Charlotte Platzer-Björkman, Teknisk fysik, UU

Pristagare 2011
Charlotte Platzer-Björkman

Charlotte Platzer-Björkman är född i Uppsala 1976, avlade studentexamen vid Katedralskolan 1995, blev civilingenjör i Teknisk Fysik vid Uppsala Universitet 2001 och teknologie doktor i elektronik vid Uppsala Universitet 2006. Hon har tillbringat ett år vid Institutt for Energiteknikk utanför Oslo 2009, och är sedan december 2010 docent samt biträdande lektor vid avdelningen för Fasta Tillståndets Elektronik, Uppsala Universitet.

Platzer-Björkman beskriver sin forskning så här:
Min forskning rör tunnfilmsmaterial med användning i solceller. För att solceller ska kunna bidra till vår energiförsörjning i stor skala krävs att de är billiga att tillverka och samtidigt effektiva och stabila. Billig tillverkning innebär material med många defekter, vilket som regel leder till elektriska förluster. De material som är mest intressanta för solceller är de som visar låga förluster trots stor mängd defekter av olika slag. I min forskning fokuserar jag på hur materialegenskaper och gränsytor påverkar funktion och förluster hos solceller. Jag har till största del arbetat med Cu(In,Ga)Se2, kallat CIGS, men även med metallhydrider och multikristallina kiselsolceller under mitt år i Norge.

Jag har också intresserat mig för hur ljusinducerade förändringar av elektriska egenskaper hos vissa material påverkar solceller. Sedan 2010 arbetar jag med ett nytt lovande solcellsmaterial, Cu2ZnSn(S,Se)2, kallat CZTS, som inte innehåller några sällsynta eller skadliga grundämnen. Målet för forskningen är att kontrollera filmtillväxt och att förstå hur filmkvalitet, sammansättning, segregering av sekundärfaser samt gränsytor mot kontaktmaterial påverkar optiska och elektriska förluster i dessa solceller.

Dariush Mokhtari, Medicin, UU

Stöd till medicinsk forskning vid Uppsala universitet

Göran Gustafssons stiftelse stöder medicinsk forskning vid Uppsala universitet, främst genom att under en treårsperiod ge ett väsentligt bidrag till lönen för unga forskare på docentnivå. Ny mottagare av detta stöd är Dariush Mokhtari.

Pristagare 2012
Dariush Mokhtari

Dariush Mokhtari är född i Nacka 1977, växte upp i Älta och tog studentexamen vid Nacka gymnasium 1996. Efter fullbordad militärtjänst flyttade han till Uppsala för att studera molekylärbiologi vid Uppsala universitet, där han även gick en biomedicinsk forskarskola. Han blev Fil. Mag. i molekylärbiologi 2002, genomförde doktorandstudier vid Institutionen för medicinsk cellbiologi, och disputerade 2008, allt vid Uppsala universitet. Mokhtari har bedrivit post-doktorala studier med finansiering från Svenska Sällskapet för Medicinsk Forskning och är nu verksam vid Institutionen för medicinska vetenskaper, Uppsala universitet.

Dariush Mokhtari beskriver sin forskning så här:
Min forskning syftar till att på cellulär och molekylär nivå förstå varför beta-cellerna dör vid typ-1 diabetes. Beta-cellerna finns i de s.k. Langerhanska öarna i bukspottskörteln och är de celler som producerar insulin. Vid typ-1 diabetes angriper kroppens immunsystem beta-cellerna, vilket leder till insulinbrist och förhöjda blodsockernivåer. Tyvärr finns det idag inget botemedel mot sjukdomen utan typ-1 diabetiker måste dagligen reglera sitt blodsocker genom att ta insulin. Typ-1 diabetes medför även en ökad risk för komplikationer på bl.a. ögon, njurar, nerver och blodkärl. De exakta mekanismer som bidrar till att beta-cellerna dör vid typ-1 diabetes är idag okända. I min forskning använder jag humana Langerhanska öar från donatorer för att bl a studera hur aktivering/deaktivering av olika signalproteiner påverkar beta-cellernas överlevnad och funktion. Jag studerar även hur dessa signalproteiner påverkar diabetes i djurmodeller. Genom att identifiera och öka förståelsen om de cellulära och molekylära mekanismer som är verksamma vid förstörandet av beta-cellerna så finns det en möjlighet att vi i framtiden kommer att kunna förhindra typ-1 diabetes.

Axel Målqvist, Teknisk fysik, UU

Pristagare 2012
Axel Målqvist

Axel Målqvist är född 1978 i Brämhult. Han avlade studentexamen vid Eksjö gymnasium 1997, blev civilingenjör i teknisk fysik 2001 och teknologie doktor i tillämpad matematik vid Chalmers Tekniska högskola 2005. Efter doktorsexamen tillbringade han två år som postdoc vid Colorado State University och University of California i San Diego. Därefter anställdes han som forskarassistent vid institutionen för informationsteknologi, Uppsala universitet, och är sedan 2008 biträdande lektor vid samma institution. Målqvist blev 2010 docent i beräkningsvetenskap.

Målqvist beskriver sin forskning så här:
Inom beräkningsvetenskapen försöker vi hitta tillförlitliga och effektiva numeriska metoder för att lösa de ekvationer som beskriver vår omvärld. Ämnet är naturligt interdisciplinärt och spänner över tillämpad matematik, numerisk analys, datalogi, samt otaliga tillämpningsområden. Jag har arbetat med att numeriskt lösa differentialekvationer, vars data varierar över många skalor i rummet. Exempel på problem som leder till sådana ekvationer är grundvattenflöde, flöde i oljereservoarer samt koldioxidlagring. I dessa tillämpningar är datorsimulering nödvändig för att kunna fatta kritiska beslut. Variationen över många skalor innebär svårigheter när man vill utforma tillförlitliga numeriska algoritmer. Det krävs adaptiva algoritmer där parallella beräkningar på finare skalor används för att berika lösningsrummen på de grövre skalorna.

Via stödet från Göran Gustafssons stiftelse kommer jag att kunna fördjupa mitt arbete inom numeriska metoder för koldioxidlagringsproblem. En viktig komponent blir att ta hänsyn till den stora osäkerheten i data som är typisk för denna tillämpning. Arbetet kommer att ske i samarbete med institutionen för geovetenskap vid Uppsala universitet, som har tillgång till data och har stor erfarenhet av modellering. Målet är att göra beräkningarna snabbare och mer tillförlitliga så att beslut som fattas baserade på beräkningarna (t ex om en plats är lämplig för lagring) blir bättre underbyggda.

Åsa Johansson, Medicin, UU

Pristagare 2013
Åsa Johansson

Åsa Johansson är född och uppvuxen i Malmö. Hon flyttade till Uppsala 1995, där hon läste civilingenjörsprogrammet i Molekylär bioteknik och disputerade i Medicinsk genetik 2006. Åsa Johansson har tillbringat två år som postdoc i ett samarbetsprojekt mellan Texas Biomedical Research Institute (tidigare Southwest Foundation for Biomedical Research), San Antonio, Texas och Norwegian University of Science and Technology (NTNU), Trondheim, Norge. Hon fortsatte därefter som postdoc vid Uppsala universitet. Sedan 2010 är hon anställd som bioinformatiker/forskare vid Uppsala Clinical Research Center (UCR) och har även en deltidstjänst som forskare vid institutionen för Immunologi, Genetik och Patologi, Uppsala universitet.

Åsa Johansson beskriver sin forskning så här: Att våra arvsanlag påverkar vår hälsa och risken för sjukdom har varit känt sedan länge. De senaste åren har jag varit med och bidragit till att identifiera hundratals gener som påverkar risken för olika folksjukdomar. Bara en bråkdel av våra arvsanlag består av gener, medan den största delen består av element som bestämmer om en gen ska vara aktiv, d.v.s. slås av eller på. Olika organ i kroppen har olika funktionen där olika gener är av- och påslagna. Denna reglering, som kallas epigenetik, påverkas av vår miljö. Om vi utsätts för gifter, näringsbrist eller svält ändras aktiviteten av våra gener, en förändring som kan bli permanent och även föras vidare till våra barn. Vi vet också att epigenetiska förändringar kan påverka risken för många folksjukdomar, så som diabetes och hjärt-kärlsjukdomar.

Med stödet från Göran Gustafssons stiftelse kommer jag att studera hur förändringar av epigenetiska faktorerna påverkar vår hälsa och risk för sjukdomar. Jag kommer att undersöka hur vår vardagsmiljö och diet påverkar genregleringen, samt mäta till vilken grad den epigenetiska regleringen ärvs av kommande generationer. Resultaten från min forskning kommer att bidra till en bättre förståelse för hur vi redan som unga kan påverka vår sjukdomsbild som äldre. Mediciner som påverkar epigenetisk reglering har visat sig vara lovande för behandling av bland annat cancer. I slutändan hoppas jag att min forskning kan bidra till tidig riskprediktion och bättre mediciner för många av våra folksjukdomar.

Erik Johansson, Teknisk fysik, UU

Pristagare 2013
Erik Johansson

Erik Johansson är född i Lidköping 1977, avladestudentexamen vid De la Gardiegymnasiet 1996, blev civilingenjör i teknisk fysik vid Chalmers 2001 och teknologie doktor i fysik vid Uppsala universitet 2006. Efter doktorsexamen tillbringade han två år som postdoktor vid Lunds universitet. Sedan 2010 är han forskarassistent i fysikalisk kemi på Uppsala Universitet.

Johansson beskriver sin forskning så här:
Min forskning handlar om att utveckla och förstå nya effektiva och billiga solcellsmaterial. Solcellsmaterialen jag har studerat har varit nanostrukturerade och de flesta är baserade på partiklar i nanometerstorlek. Anledningen till att solcellsmaterialen är nanostrukturerade är att de då får en väldigt stor inre kontaktyta där ljus kan omvandlas till elektricitet. Dessa material är också ofta billiga att tillverka och processen för tillverkning av solceller kan göras billig, vilket är viktigt för att solcellerna ska kunna konkurrera med kolkraft och kärnkraft. Jag har använt olika avancerade mätmetoder baserade på t.ex. röntgenstrålning eller laserljus för att förstå hur solcellerna fungerar. Med röntgenstrålning mätte vi exempelvis hur molekylerna i solcellerna är geometriskt placerade på ytan av nanopartiklar och hur molekylernas elektronnivåer förhåller sig till varandra.

Detta kunde sedan användas för att förstå varför en solcell baserad på en viss molekyl var bättre än en solcell baserad på en annan molekyl, och hur man kan göra för att ytterligare förbättra solcellen. Processen för hur fotoner (ljuspartiklar) omvandlas till laddningar kunde vi följa med olika spektroskopier baserade på synligt ljus. Vi kan med de olika mätmetoderna därmed förstå sambandet mellan den geometriska strukturen i solcellen och de olika stegen i energiomvandlingsprocessen, och slutligen solcellens effektivitet. Nyligen har vi gjort intressanta upptäckter om hur vi kan förbättra delar av solcellen och även hittat nya material som har mycket lovande solcellseffektivitet. Stödet från Göran Gustafssons stiftelse kommer därför vara till stor hjälp för att undersöka dessa nya material ytterligare och nå fram till effektiva och billiga solceller.

Olof Idevall-Hagren, Medicin, UU

Pristagare 2014
Olof Idevall-Hagren

Olof Idevall-Hagren föddes i Upplands Väsby 1980 och avlade studentexamen vid Vilunda gymnasium 1999. Han studerade sedan vid Uppsala Universitet och tog en magisterexamen i medicin 2005 Efter disputation vid samma universitet 2010 tillbringade han drygt två år vid Yale University finansierad av Vetenskapsrådet. Sedan 2013 är han anställd som forskare vid institutionen för medicinsk cellbiologi vid Uppsala universitet.

Idevall-Hagren beskriver sin forskning så här:

Min forskning syftar till att förstå de molekylära mekanismer som styr funktionen hos de insulinfrisättande beta-cellerna i bukspottkörteln och hur dessa mekanismer förändras vid diabetes. Särskilt studerar jag en cellulär struktur som kallas det endoplasmatiska nätverket. Där produceras bl.a. insulin, vilket sedan packas in i sekretionskorn och transporteras till cellens yta där hormonet frisätts till intilliggande blodkärl som svar på förhöjda blodsockernivåer. När denna frisättning störs eller då insulinkänsligheten i kroppens organ minskar, kompenseras det genom att insulinproduktionen ökar. Detta leder till överbelastning av det endoplasmatiska nätverket och kan, om det får fortgå, resultera i störd cellfunktion och celldöd. Mycket tyder på att detta är en kritisk händelse i uppkomsten av diabetes. Interventioner som motverkar dessa skadliga mekanismer skulle därför kunna fördröja eller t.o.m. förhindra sjukdomens utbrott.

Jag är särskilt intresserad av hur informationsflödet inuti beta-cellerna går till, t.ex. hur en störning i det endoplasmatiska nätverket kan påverka processer i andra delar av cellen så som frisättning av insulin. Genom att känna till informationsflödet kan jag förhoppningsvis isolera de skadliga mekanismerna utan att påverka cellernas normala funktion. Tack vare stöd från Göran Gustafssons Stiftelse har jag nu möjlighet att studera dessa mekanismer med målet att hitta nya vägar att förhindra uppkomst av diabetes.