Molekylär biologi. Föreläsning av Ruth Palmer, professor i cellbiologi på Sahlgrenska Akademien, Göteborgs universitet.
FörRuth Palmer, född 1970 (45 år), har doktorsgrad i biokemi och är sedan 2014 professor i cellbiologi på Sahlgrenska Akademien, Göteborgs universitet. Hon får priset ”för sina betydelsefulla upptäckter kring funktion och reglering av ett viktigt tyrosinkinas som kontrollerar cellulär signalering och utveckling”. Föreläsningen skedde i samband med prisutdelningen vid KVA.
MOLEKYLÄR BIOLOGI: Biokemi med den levande cellen som provrör
Johan Elf, född 1975 (34 år), är akademiforskare i kemi och docent i molekylär bioteknik vid Uppsala universitet.
Han leder en forskningsgrupp i molekylär systembiologi vid institutionen för cell- och molekylärbiologi. Johan Elfs forskning är inriktad på att klargöra hur biokemiska processer i cellerna kan förstås genom att kombinera matematiska modeller, simuleringar och experiment på enskilda bakterieceller. Elf har tidigare utvecklat teoretiska modeller för genreglering och den kemiska dynamiken inne i cellerna. Han har framgångsrikt utvecklat matematiska metoder för att analysera slumpmässigheten i cellens kontrollsystem och datoralgoritmer för att simulera biokemiska reaktioner där man även tar hänsyn till cellens geometri. Till exempel har han visat hur den genetiska informationen i RNA avkodas olika beroende på vilken miljö de växer i, och hur vissa antibiotika kan påverka genetiskt identiska bakterier på olika sätt beroende på hur de sätts in.
På senare tid har Elf arbetat med att utveckla optiska experimentella metoder för att kunna mäta genreglering i enskilda bakterieceller med hög tidsupplösning. Sådana metoder var nödvändiga för att testa specifika teoretiska förutsägelser om koordinerad reglering av olika gener i enskilda celler. De nya mikroskopimetoderna möjliggjorde de första direkta mätningarna av hur fort DNA-bindande proteiner hittar rätt på kromosomerna, vilket ledde till att den etablerade teorin för hur detta går till behövde revideras. Just nu pågår ett flertal projekt i Elf’s laboratorium som kombinerar helt nya metoder för att följa hur enskilda proteinmolekyler rör sig i levande celler med specialskrivna datorprogram som simulerar cellens fysikaliska kemi. Det största projektet syftar till att förstå genreglering av enskilda molekyler i levande bakterier.
MOLEKYLÄR BIOLOGI: Molekylära mekanismer bakom cancerutveckling
Jussi Taipale, född 1968 (42 år), är professor i medicinsk systembiologi vid Karolinska Institutet.
Han utnyttjar systembiologi och genomik (kunskapen om arvsmassans uppbyggnad och funktion) för att studera 1) varför det krävs ett så stort antal gener för cancerutveckling, 2) varför olika typer av gener är muterade vid olika former av cancer, och 3) vad som är gemensamt för all cancerutveckling. Taipales forskargrupp ämnar främst att med hjälp av funktionsgenomik och RNA-interferens (RNAi) identifiera alla gener som är nödvändiga för celldelning.
Utifrån detta kommer de att med systembiologiska metoder identifiera målgener för onkogener (arvsanlag som har förmåga att omvandla en cell till en cancercell) samt identifiera de DNA-sekvenser uppströms eller nedströms om målgenerna som behövs för att reglera gener och celltillväxt. Jussi Taipales forskargrupp studerar bland annat tjocktarmscancer, prostatacancer, hudcancer och bröstcancer.
MOLEKYLÄR BIOLOGI: Marina bakterier påverkar havets kol- och energiflöden
Jarone Pinhassi, född 1969 (42 år), är docent i mikrobiologi vid Linnéuniversitetet,Kalmar.
Han bedriver forskning om marina bakteriers biologiska mångfald, ekologi, fysiologi och genomik (arvsmassans uppbyggnad och funktion) för att fastställa bakteriernas roll i kolets och närsalternas kretslopp i havet. Till skillnad från liv på land domineras livet i havet av mikroorganismer. Nära hälften av all fotosyntes på jorden – och därmed halva globala syreproduktionen – utförs av marina mikroskopiska alger. De producerar det organiska material som utgör grunden för näringskedjan i havet. Bakterier är de huvudsakliga nedbrytarna av restprodukter i havet och omsätter nära hälften av det organiska material som algerna producerat. Framstegen i genetik och molekylärbiologi gör det nu möjligt att studera och förstå hur kolets kretslopp regleras av bakterier över olika rumsliga och tidsmässiga skalor i den naturliga miljön.
I experimentella studier har Jarone Pinhassi visat att marina bakterier i världshaven effektivt kan utnyttja solljus för både tillväxt och förbättrad överlevnad tack vare det nyupptäckta och unika ljusfångande pigmentet proteorhodopsin. Detta protein är bland annat besläktat med det pigment i näthinnan som möjliggör mörkerseendet hos människan. Det är nu angeläget att närmare identifiera och kvantifiera de molekylära mekanismer som möjliggör för bakterier att påverka globala kol- och energiflöden.
MOLEKYLÄR BIOLOGI: Att skräddarsy behandlingar för hundar och människor
Kerstin Lindblad-Toh, född 1970 (42 år), är professor i komparativ genomik vid Institutionen för medicinsk biokemi och mikrobiologi vid Uppsala universitet.
Lindblad-Toh har i sin forskning kartlagt ett stort antal arvsmassor för dägg-djur, ödlor och fiskar och jämfört däggdjurens arvsmassor för att hitta specifika gener i människans arvsmassa, samt de signaler som avgör när gener slås på och av. Efter att ha kartlagt hundens arvsmassa har Lindblad-Toh hittat gener som förändrats när hunden domesticerats. Dessa inkluderar gener som styr hjärnans utveckling och funktion och metabolism av stärkelse. Dessutom fokuserar Lindblad-Toh på att hitta sjukdomsgener hos hundar, eftersom hundar och människor har nästan samma genuppsättning, lever i samma miljö och får samma åkommor såsom cancer, epilepsi, hjärtsjukdomar och inflammatoriska sjukdomar.
I sin pågående forskning studerar Lindblad-Toh parallellt gener som identifierats hos hunden och gener hos människor med motsvarande sjukdom. Målet är att identifiera mutationer och på sikt få fram tidigare diagnoser och bättre, skräddarsydda behandlingar för både hundar och människor.
MOLEKYLÄR BIOLOGI: Bakteriers immunsystem utnyttjas för bioteknologi och biomedicinsk forskning
Emmanuelle Charpentier, född 1968 (45 år), är docent vid Umeå universitet med inriktning mot molekylär patogenes.
Under de senaste decennierna har vissa bakteriella smittoämnen som orsakar livshotande infektionssjukdomar utvecklat motståndskraft mot antibiotika, så kallad antibakteriell resistens. Behovet av nya läkemedel med förmåga att bekämpa bakteriella smittoämnen är därför stort. Charpentiers forskargrupp studerar hur bakterier interagerar med sin omgivning när de orsakar sjukdomar. De fokuserar på de mekanismer som styr överföringen av virulensgener bland patogena bakterier med hjälp av rörliga element som kallas virus. Genom att kombinera genetiska, molekylärbiologiska och biokemiska metoder har hennes forskargrupp kunnat påvisa en unik mekanism som gör det möjligt för bakterier att känna igen virus-DNA och klyva den.
Bakterier som attackeras av virus försvarar sig via enzymkomplexet CRISPR-Cas9. Enzymet programmeras av bakteriell RNA som känner igen virus-DNA. Charpentiers arbete har visat sig vara mycket relevant för förståelsen av bakteriell immunitet och virulens. DNA-modifiering med CRISPR-Cas9 har snabbt plockats upp av forskarvärlden som ett nytt och effektivt verktyg för att förändra eller tysta ned gener i organismer. Tekniken är på väg att revolutionera genetiken och skulle kunna användas för att utveckla nya RNA-baserade terapier för behandling av ärftliga sjukdomar.
Mattias Jakobsson, född 1975 (40 år), är professor i genetik vid Uppsala universitet.
Hans forskning fokuserar på att förstå mä
Mattias Jakobsson Foto:Mikael Wallerstedt
nniskans evolutionära och demografiska historia genom att studera de storskaliga genetiska variationsmönster vi ser hos dagens människor och hos många tusen år gamla mänskliga lämningar. Mattias Jakobsson har undersökt de genetiska variationsmönstren hos ett stort antal folkgrupper från hela världen. Resultaten har satt nytt ljus på människans tidigaste förgreningar för mer än hundra tusen år sedan och visar på att specifika gener, som påverkar neurologiska funktioner och skelettmorfologi, evolverade snabbt hos människans föregångare för några hundra tusen år sedan.
Forskningen har till exempel lett till att skriva om förhistorien i Europa: genom att studera genetisk data från skandinaviska stenåldersskelett har Jakobssons forskargrupp kunnat visa att jordbruket spreds norrut med människor som migrerade från södra Europa. Dagens europeiska befolkning är alltså är en blandning av stenåldersjägarfolken och jordbrukande migranter. Tidigare har man trott att jordbruket spreds som en kultur, utan att involvera migration. Upptäckten har fått stor uppmärksamhet. Mattias Jakobssons forskning spänner från matematisk modellering till avancerad molekylär genteknik och människans historia. Hans forskargrupp använder sig av moderna statistiska metoder för att analysera storskaliga genetiska data för att förstå interaktionen mellan genetiska, evolutionära och demografiska processer. Med hjälp av avancerade molekylärgenetiska tekniker och förfinade beräkningsmetoder kan de också undersöka hundratusentals genetiska varianter från många tusen år gammalt mänskligt skelettmaterial.
To provide the best experiences, we use technologies like cookies to store and/or access device information. Consenting to these technologies will allow us to process data such as browsing behavior or unique IDs on this site. Not consenting or withdrawing consent, may adversely affect certain features and functions.
Functional
Alltid aktiv
The technical storage or access is strictly necessary for the legitimate purpose of enabling the use of a specific service explicitly requested by the subscriber or user, or for the sole purpose of carrying out the transmission of a communication over an electronic communications network.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistics
The technical storage or access that is used exclusively for statistical purposes.The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
The technical storage or access is required to create user profiles to send advertising, or to track the user on a website or across several websites for similar marketing purposes.