Jonathan Cedernaes, Medicin, UU

Jonathan Cedernaes

Jonathan Cedernaes får Göran Gustafssonpriset i medicinsk vetenskap vid Uppsala universitet. Han är född 1985 i Stockholm. Han studerade till läkare vid Uppsala universitet och erhöll läkarlegitimation 2013. Parallellt med dessa studier deltog han i forskningsprojekt om sömn och nutrition och kunde även disputera år 2013. 2015-2019 forskade Jonathan som postdoktor vid Northwestern University i Chicago och har därefter etablerat sitt eget laboratorium vid Uppsala universitet.

Jonathan Cedernaes beskriver sin forskning så här:Min forskning är inriktad på dygnsrytmer och sömn i relation till människans ämnesomsättning. Idag är det en stor andel av befolkningen som antingen utför skiftarbete eller sover för lite eller på oregelbundna tider. Att på längre sikt störa dygnsrytmen och sömnen ökar risken för bl.a. hjärtkärlsjukdomar, ofördelaktig viktuppgång och typ 2-diabetes. Min tidigare forskning har visat att vävnaders cellulära dygnsrytmer störs vid simulerat skiftarbete och att det sker i vävnader som är avgörande för en normal ämnesomsättning, dvs. muskel- och fettvävnaden. Jag har också visat att detta i sin tur tycks leda till vävnadsspecifika störningar av ämnesomsättningen, vilket ger oss förståelse för betydelsen av de molekylära rytmerna i dessa vävnader. I min forskning använder jag mig av kliniska interventions-protokoll för att förstå t.ex. hur genuttrycket aktiveras specifika tider på dygnet. Jag är speciellt intresserad av hur kost och träning kan påverka våra dygnsrytmer. Förhoppningen är att i slutändan även kunna finna molekylära mål mot negativa effekter av störd dygnsrytm, som exempelvis kan användas hos de som behöver utföra skiftarbete.

Jonathan dansar gärna salsa, helst kubansk stil, men dansar även Bachata och West Coast Swing och har t.o.m. uppträtt. Han läser både mycket populärvetenskap och klassisk skönlitteratur och gillar dessutom att springa i terräng.

Gustafssonpriset till unga forskare vid Kungl tekniska högskolan och Uppsala universitet utgörs av ett forskningsbidrag på sammanlagt 2,75 miljoner kronor, under tre år. Pristagarna är högst 36 år. 

Gustaf Christoffersson, Medicin, UU

Foto: Gustaf Christoffersson

Humanbiologi. Gustaf Christoffersson är född1982 i Malmö och tog studenten vid Lars Kaggskolan i Kalmar 2001. Han studerade vid apotekarprogrammet vid Uppsala universitet och fick apotekarlegitimation 2007. Parallellt med dessa studier deltog han i forskningsprojekt vid Institutionen för medicinsk cellbiologi i Uppsala där han sedan fortsatte sin forskarutbildning och disputerade 2013 med en avhandling om hur immunceller påverkar nybildningen av blodkärl i en ny experimentell modell som utvecklats av honom själv. Han var 2014-2016 postdoktor vid La Jolla Institute for Allergy and Immunology i Kalifornien, där han studerade immunreglering vid typ 1 diabetes på ett anslag från Vetenskapsrådet. Han återvände sedan till Uppsala universitet där han byggt upp ett laboratorium för forskning kring typ 1 diabetes. Sedan 2018 är han genom Svenska Sällskapet för Medicinsk Forsknings (SSMF:s) stora anslag anställd som forskare vid Institutionen för medicinsk cellbiologi.

Gustaf Christoffersson beskriver sin forskning så här: Vad som orsakar typ 1 diabetes är fortfarande oklart. Sjukdomen kan drabba vem som helst oavsett ålder, kön eller tidigare sjukdom i familjen. De exakta mekanismerna bakom hur immunförsvaret fungerar vid destruktionen av de insulinproducerande betacellerna och hur det regleras är inte heller kända. Dessa kunskapshål gör att effektiva behandlingar och botemedel idag saknas för denna sjukdom som idag ökar i världen. I min forskning fokuserar jag på den reglering av immunsystemet som pågår i mikromiljön vid de insulinproducerande betacellerna. Kring dessa celler finns vid insjuknande i typ 1 diabetes en lång rad olika immunceller, men hur dessa interagerar med varandra och med betacellerna är oklart. I min forskning använder jag nyskapande tredimensionell mikroskopi för att kunna studera dessa förlopp i realtid i avancerade musmodeller. Informationen från sådana experiment kan förhoppningsvis leda till att vi lär oss mer om vad som styr immunförsvaret när det förstör betacellerna och därmed leda till effektiva behandlingar. Genom stödet från Göran Gustafssons stiftelse kommer jag att kunna utöka min forskargrupp för att ytterligare kunna fördjupa vår kunskap om denna sjukdom.

Gustafssonpriset till unga forskare vid Kungl tekniska högskolan och Uppsala universitet utgörs av ett forskningsbidrag på sammanlagt 2,5 miljoner kronor, under tre år. Pristagarna är högst 36 år. 

Anna Rostedt Punga, Medicin, UU

Anna Rostedt Punga
Foto: Anna Rostedt Punga

Medicin. Anna Rostedt Punga, föddes 1978 i Sävsjö, i Småland, där hon också växte upp. Hon studerade läkarprogrammet med forskningsinriktning (LÄFO) vid Uppsala universitet och tog läkarexamen 2003. Efter AT-läkartjänst vid Gävle sjukhus erhöll hon läkarlegitimation 2005 och påbörjade ST-läkartjänst vid Avdelningen för Klinisk Neurofysiologi vid Akademiska sjukhuset i Uppsala. Parallellt genomförde hon sin forskarutbildning vid Institutionen för neurovetenskap, Uppsala universitet, och försvarade sin avhandling 2007 om den autoimmuna neuromuskulära sjukdomen myasthenia gravis (MG). Hon var 2009-2010 postdoktor vid Institutionen för Neurobiologi och Farmakologi vid Basel Universitet, Schweiz, genom ett stipendium från Svenska Sällskapet för Medicinsk Forskning (SSMF). Sedan 2011 har hon forskat vid Institutionen för neurovetenskap, Uppsala universitet, parallellt med att hon arbetat som läkare på Klinisk neurofysiologi vid Akademiska sjukhuset. Hon blev docent i Klinisk neurofysiologi vid Uppsala universitet 2014 och innehar sedan 2015 en klinisk forskartjänst, finansierad från Vetenskapsrådet, och leder en forskargrupp med tre doktorander, två postdoktorer och en forskningsassistent.

Anna Rostedt Punga beskriver sin forskning så här:

Den röda tråden i min forskning är störd signalering mellan nerver och muskler och sjukdomen Myasthenia Gravis (MG), som drabbar nerv-muskelsynapsen. MG är en kronisk autoimmun neurologisk sjukdom där antikroppar attackerar en persons egna muskelreceptorer. Eftersom muskeltröttheten varierar mycket över tid och även över en och samma dag ökar behovet av tillförlitliga biomarkörer som kan hjälpa till att förbättra omhändertagandet av patienterna.

Jag och min forskargrupp arbetar med att hitta pålitliga biomarkörer för MG, som kan mätas i blodet. Vi har lyckats identifiera sjukdomsspecifika proteiner och små icke-kodande RNA (så kallade mikroRNA) som kan visa sig värdefulla att följa hos patienter för att förutsäga förbättring eller försämring. Vi arbetar även med nya modeller för sjukdomar i nerv-muskelsynapsen där vi hoppas kunna studera de processer som sker tidigt i sjukdomsförloppet. På så sätt hoppas vi på sikt kunna vara med och utveckla nya läkemedel. Med hjälp av stödet från Göran Gustafssons stiftelse kommer jag att fortsätta arbeta för bättre omhändertagande och behandling av MG-patienter. Förhoppningsvis kan vi en dag finna orsaken till MG och liknande sjukdomar som drabbar synapser i nervsystemet.

Gustafssonpriset till unga forskare vid Kungl tekniska högskolan och Uppsala universitet utgörs av ett forskningsbidrag på sammanlagt 2,5 miljoner kronor, under tre år. Pristagarna är högst 36 år. 

Lucie Delemotte, KTH

Foto: Lucie Delemotte

Teknisk fysik. Lucie Delemotte är född 1985 i nordöstra Frankrike. Hon avlade examen inom kemi och doktorerade inom beräkningskemi vid Université de Lorraine 2011. Efter en vistelse som postdoktor vid Institute for Computational Molecular Science vid Temple University, Philadelphia, USA, samt vid Laboratory for Computational Biochemistry and Chemistry vid EPFL, Lausanne, Schweiz, med stöd från ett Marie Curie Fellowship, flyttade Lucie Delemotte till Science for Life Laboratory (SciLifeLab), Solna, som forskarassistent vid avdelningen för Tillämpad fysik vid KTH.

 

Lucie Delemotte beskriver sin forskning så här: För att kommunicera med sin omgivning använder biologiska celler membranproteiner, så som exempelvis jonkanaler. Dessa underlättar transport av joner över membranet och möjliggör fortplantning av elektriska signaler. Genetiska mutationer i dessa proteiner leder till dysfunktion och en mängd ärftliga sjukdomar, till exempel hjärtarytmier och epilepsi. För att förstå detaljerna kring hur dessa molekylära mekanismer verkar använder jag  så kallade molekyldynamiska (MD) simuleringar. Dessa simuleringar har en atomär spatial upplösning, samt en tidsupplösning av storleksordningen femtosekunder. Begränsningarna för metoden återfinnes således i de längre tidsskalorna, det vill säga att generera simuleringar tillräckligt långa för att kunna representera biologiska processer. Jag har stort fokus på att utveckla protokoll för avancerade molekyldynamiska simuleringar vilka kringgår detta hinder och tillåter observation av just dessa biologiskt relevanta fenomen. Det gemensamma arbetet inom Delemotte Lab möjliggör en djupare förståelse av det komplexa samspelet mellan membranproteiner och deras omgivning, framförallt lipidmolekylerna i cellmembranet. Delemotte Lab tacklar också utmaningar som att försöka förstå hur genetiska mutationer, vilka kan orsaka sjukdomar likt hjärtarytmier, Att förstå orsakerna till varför proteiner uppvisar avvikande funktion eller beteende kan bland annat användas för att utveckla mer effektiva läkemedel.

Gustafssonpriset till unga forskare vid Kungl tekniska högskolan och Uppsala universitet utgörs av ett forskningsbidrag på sammanlagt 2,5 miljoner kronor, under tre år. Pristagarna är högst 36 år. 

Jonas Sellberg, KTH

Foto: Jonas Sellberg

Teknisk fysik. Jonas Sellberg är född 1985 i Stockholm. Han tog studenten 2004 från Norra Real och läste sedan civilingenjörsprogrammet i kemi och kemiteknik på KTH med inriktning mot organisk och fysikalisk kemi, där han tog examen 2009 efter utbytesår vid University of Tokyo och sommarutbyte vid Princeton University i USA. Han avlade doktorsexamen i kemisk fysik 2014 vid Stockholms universitet och fick Sigrid Arrhenius stipendium för ett framstående forskningsarbete efter tre år som gästforskare 2010-2013 vid SLAC National Accelerator Laboratory i Kalifornien. Under 2014-2015 var han postdoktor vid Uppsala universitet med fokus på biofysik. År 2016 återvände han till KTH som biträdande lektor vid Institutionen för tillämpad fysik.

Jonas Sellberg beskriver sin forskning så här: Ljuskällor som producerar koherent ljus har förändrat vårt samhälle sedan lasern uppfanns på 1960-talet. Lasrar är idag involverade i varje telefonsamtal och epost. Lasrar används också för att sekvensera DNA och behandla synfel på någon minut. För röntgenljus, d.v.s. ljus med väldigt kort våglängd som är jämförbar med avstånden mellan atomer, har uppfinningen av liknande ljuskällor dröjt. Det var först år 2005 som världens första mjukröntgenlaser togs i bruk vid DESY i Tyskland, och år 2009 blev världens första hårdröntgenlaser tillgänglig för användare vid SLAC i USA. De ultrasnabba röntgenpulserna med extremt hög intensitet har sedan dess använts av forskare världen över för att avbilda celler och virus, strukturbestämma proteiner och kartlägga elektroniska och magnetiska egenskaper hos atomer, molekyler och nanostrukturerade material. Min forskning har varit tätt sammankopplad med utvecklingen av röntgenlasern och jag har sedan 2010 varit involverad i över 40 olika experiment vid röntgenlaseranläggningar på de tre kontinenter där de hittills har byggts. Även om tillämpningarna har varierat så är experimenten huvudsakligen interdisciplinära och i gränslandet mellan fysik, kemi och biologi. Ofta handlar det om att få en inblick i kemiska och fysikaliska processer som sker på en ultrasnabb tidsskala jämförbar med tiden det tar för ljus att färdas tjockleken av ett tunt hårstrå. Jag har till exempel varit delaktig i att mäta strukturen och dynamiken av vätebindningar i underkylt vatten ned till -46 °C, avbilda virus och celler på nanonivå, och förstå hur den elektroniska strukturen förändrar sig under kemiska reaktioner, så som när fotosystem omvandlar vatten till syrgas och när kolmonoxid oxideras till koldioxid med hjälp av en katalysator. Samarbete är en central del av min forskning och jag är idag aktiv i den grupp av forskare som utvecklar en svensk röntgenlaser. På sikt har det potentialen att uppnå varje molekylfysikers dröm – att spela in filmer av makromolekylära kemiska reaktioner med atomär upplösning.

Gustafssonpriset till unga forskare vid Kungl tekniska högskolan och Uppsala universitet utgörs av ett forskningsbidrag på sammanlagt 2,5 miljoner kronor, under tre år. Pristagarna är högst 36 år. 

David Rydh, KTH

David Rydh

Teknisk fysik. David Rydh är född i Morgongåva 1980. Han tog studenten 1999 på Karlbergsgymnasiet i Åmål och började därefter på KTH Teknisk fysik med inriktning mot matematik, där han tog examen 2003. Han avlade sedan doktorsexamen i matematik 2008 vid KTH. Under 2009-2010 var han postdoktor vid UC Berkeley på anslag från Vetenskapsrådet. Därefter återvände han till matematikinstitutionen på KTH, först en kort tid som forskarassistent, sedan som biträdande lektor 2011 och nu universitetslektor (och docent) 2015. Rydh fick Göran Gustafssonpriset för unga forskare 2011 och Wallenbergpriset i matematik 2015.

David Rydh beskriver sin forskning så här: I matematik, liksom i naturvetenskap, är det viktigt att systematisera och klassificera. Ett välkänt exempel från antiken är klassificeringen av regelbundna polyedrar: de platonska kropparna. I mitt forskningsområde, algebraisk geometri, studerar man geometriska objekt som är definierade av polynomekvationer. Ett moduliproblem innebär att klassificera sådana geometriska objekt. Det kan till exempel vara linjer i ett plan eller kurvor. Till ett sådant problem söker vi en geometrisk lösning, ett modulirum, där varje punkt i modulirummet motsvarar en klass av objekten. Ofta har objekten man klassificerar symmetrier. För att då kunna lösa moduliproblemet behöver vi låta modulirummet vara en så kallad stack som har en mer komplicerad geometrisk struktur. En stor del av min forskning behandlar moduliproblem och teorin för stackar i algebraisk geometri. Ett viktigt verktyg som jag har utvecklat är Tannakadualitet som knyter samman teorin för algebraiska stackar med en till synes helt annan del av matematiken, monoidala kategorier. Med Tannakadualitet har jag löst moduliproblem som tidigare var olösta och givit en precis beskrivning av den lokala geometriska strukturen hos algebraiska stackar. Ett annat viktigt verktyg jag utvecklat är stackiga uppblåsningar som på ett kontrollerat sätt modifierar stackar. Det visar sig att alla slags modifikationer går att beskriva med hjälp av stackiga uppblåsningar. Eftersom de senare är mycket explicita blir alla modifikationer hanterbara.

Gustafssonpriset till unga forskare vid Kungl tekniska högskolan och Uppsala universitet utgörs av ett forskningsbidrag på sammanlagt 2,5 miljoner kronor, under tre år. Pristagarna är högst 36 år. 

Ilaria Testa, KTH

Ilaria Testa
Ilaria Testa

Teknisk fysik. Ilaria Testa är född i Genua, Italien 1981. Hon avlade examen i fysik samt doktorsexamen i biofysik vid Università di Genova år 2009. Efter postdoktorsvistelse 2009-2014 vid Department of Nanobiophotonics, Max Planck Institute for Biophysical Chemistry Göttingen (under ledning av nobelpristagaren i kemi 2014, Stefan Hell) flyttade Ilaria Testa till Science for Life Laboratory (SciLifeLab) och blev 2015 biträdande lektor vid institutionen för Tillämpad fysik, KTH.

Ilaria Testa beskriver sin forskning så här:Medan traditionell ljusmikroskopis spatiala upplösning begränsas till 200 nm av diffraktionsgränsen så fokuserar min forskning på utveckling av nya typer av mikroskop som möjliggör avbildning på nanonivå med en upplösning av 10-20 nm. Bland annat skapade jag en mikroskopiplattform baserad på stokastisk växling av enstaka fluorescenta molekyler med den unika möjligheten att separera dem med hjälp av ratiometrisk spektral detektion. Jag rörde mig sedan mot forskningsområdet som behandlar avbildning av levande celler och var en av pionjärerna av RESOLFT-mikroskopi, en metod som lägger vikt vid att vara minimalt invasiv för att kunna observera levande biologiska system med ej tidigare sedd spatial upplösning. Tillsammans med ett interdisciplinärt team av biologer och fysiker lyckades jag med att tillämpa RESOLFT-konceptet i levande nervceller och till och med vävnader genom att använda olika typer av fluorescerande protein. Vår studie som publicerades i Nature visade för första gången RESOLFT-mikroskopis potential för avbildning av levande celler med precision på nanoskala och minimala belysningsintensiteter. RESOLFT blev också framgångsrikt tillämpat för att avbilda dendritiska utskotts dynamik i levande hjärnvävnad, över flera timmars observation. Nyligen har jag utvecklat denna plattform för avbildning i flera färger samt observation av levande människoceller som var endogeniskt märkta med fluoroforer genom CRISP-Cas9-systemet. Vi fokuserar nu på utvecklingen av nästa generations mikroskop som kommer att möjliggöra precis identifiering av biologiska molekyler beroende på deras positioner, mängd och dynamik, allt i deras naturliga miljö. Speciell fokus kommer att läggas vid att undersöka den spatiala organisationen och funktionaliteten av nervcellsproteiner i relevanta biologiska system, allt på en nanoskala.

Gustafssonpriset till unga forskare vid Kungl tekniska högskolan och Uppsala universitet utgörs av ett forskningsbidrag på sammanlagt 2,5 miljoner kronor, under tre år. Pristagarna är högst 36 år.