Johanna Rosén

fotograf Anna Nilsen

FYSIK: Hon skapar nya material för att göra världen bättre

Johanna Rosén, född 1975, är professor vid Linköpings universitet

Hon får priset för sin innovativa forskning angående materialdesign och tillverkning av tunna filmer. Hon kombinerar experiment och teori för att förutspå nya stabila materialsystem och skräddarsy elektriska, magnetiska, mekaniska och optiska egenskaper. Johanna Rosén är materialfysiker och arbetar med att ta fram nya material med skräddarsydda egenskaper. Fokus ligger både på hårda material för verktygsindustrin och väldigt tunna material för energitillämpningar, exempelvis batterier och superkondensatorer. Först bygger forskargruppen modeller av materialet i datorn och gör beräkningar för att se om det är stabilt och har lovande egenskaper. Sedan går de ut i labbet och försöker skapa materialet. På senare år har Johanna Rosén arbetat mycket med tvådimensionella material, som MXener. Det handlar om material bestående av bara några få atomlager med unika egenskaper. Målsättningen är att de nya materialen ska kunna användas för att lösa viktiga problem vid framtagningen av läkemedel, vattenrening och avsaltning, miljövänlig energilagring och medicinsk teknik.

– Vi brukar kalla det för tillämpningsinspirerad grundforskning. Det vi vill göra är att förstå materialen och deras egenskaper så att det ska vara möjligt att använda dem för att göra vår omvärld bättre, säger Johanna Rosén som tycker att det känns väldigt ärofyllt att nu kunna sälla sig till skaran av tidigare Göran Gustafssonpristagare.

Kontakt:  073-461 3132, johanna.rosen@liu.se

 

Hiranya Peiris

Hiranya Peiris. Foto: Niklas Björling
Hiranya Peiris. Foto: Niklas Björling
Hiranya Peiris. Foto: Niklas Björling

FYSIK: Med fokus på universums allra första ögonblick

Hiranya Peiris, född 1974, är professor vid Stockholms universitet

Hon får priset för sin nydanande forskning om dynamiken i det tidiga universum, som kopplar kosmologiska observationer till grundläggande fysik.

Hiranya Peiris, som ursprungligen kommer från Sri Lanka, delar sin tid mellan arbetet vid Stockholms universitet och University College i London. Hon har bland annat deltagit i en stor internationell satsning för att ta reda på vilket som är det fysikaliska ursprunget till bildandet av kosmiska strukturer under universums allra första ögonblick.

I ett nytt projekt vill hon använda sig av det nya teleskopet i Chile, Vera Rubin Observatory, som tas i bruk 2021.

– Det här teleskopet kommer att kunna ta upprepade bilder av stora delar av himlavalvet i många års tid och med de bilderna blir det möjligt att göra en film, berättar hon.

Genom att ”spela filmen baklänges” hoppas Hiranya Peiris kunna backa hela vägen tillbaka till big bang och nå en större förståelse för den fundamentala fysik som styr universums utveckling – från begynnelsen till i dag. Det kan också leda oss närmare svaret på gåtan med vad mörk materia och mörk energi egentligen är för något. Men även göra det möjligt att upptäcka det helt oväntade.

Pengarna från Göran Gustafssonpriset kommer att komma till stor nytta för den framtida forskningen:

  • Jag är särskilt glad över att det inte finns några restriktioner för hur anslaget ska användas eftersom det ger mig en möjlighet att testa nya saker och ta större risker när jag väljer vilka projekt jag ska satsa på.

Kontakt:  08-553 781 00, hiranya.peiris@fysik.su.se

 

Anders Johansen

Anders Johansen, Foto: Kennet Ruona

FYSIK: Han forskar om hur planeter blir till

Anders Johansen, född 1977, är professor i astronomi vid Lunds universitet.

Han får priset för sin banbrytande forskning om planeters bildande och utveckling i närheten av unga stjärnor.

Anders Johansen är en teoretisk astrofysiker vid Institutionen för astronomi och teoretisk fysik på Lunds universitet. Han ägnar sig åt att konstruera datorprogram för att förstå planeters bildande. Planeter bildas i skivor av damm och grus som kretsar kring unga stjärnor. När klungorna av damm i hans simuleringar blir tillräckligt stora och täta tar gravitationen över och håller ihop stenarna.

– Jag försöker förstå hur planeter bildas runt vår sol och även runt andra stjärnor. Det har varit mycket fokus i min forskning på att förstå bildandet av planeternas byggstenar, så kallade planetesimaler, och att skapa simuleringar som visar hur de växer från små stenar ända upp till asteroidstorlek.

Han har därefter gått vidare och studerat hur hela planetsystem bildas. Andra planetsystem än vårt eget solsystem är ofta uppbyggda på ett helt annat sätt. De senaste åren har Anders Johansen arbetat med att utveckla ett nytt datorprogram som skulle kunna visa hur sådana planetsystem blir till.

– Det är många planeter som växer på samma gång och jag försöker bland annat ta reda på hur de interagerar med varandra. Observationerna av exoplaneter, dvs planeter som kretsar runt en annan stjärna än vår sol, är långt framme i dag och jag vill komma fram till teorin bakom alla dessa planeter.

Kontakt:

 Epost anders@astro.lu.se

Tel 073-684 96 98

Webbplats

www.astro.lu.se/~anders

 

Sara Strandberg

Sara Strandberg Foto: Eva Dalin

FYSIK: Hon söker svaret på universums gåtor

Sara Strandberg, född 1977, är lektor vid Stockholms universitet.

Hon får priset för sin experimentella forskning om Supersymmetri och dess potentiella roll för den Mörka materian. Genom att hon ansvarar för detektorsystem samt att hon kombinerar analysarbete och metodutveckling med nya koncept för utvärdering av data har hon en ledande roll i ett fält där forskningen sker i stora samarbeten.

Sara Strandberg är verksam inom experimentell partikelfysik och har en viktig roll inom ATLAS-experimentet vid CERN, i Schweiz. Om hon hittar bevis för att supersymmetriska partiklar existerar kommer hon kunna lösa en rad av universums gåtor. Sara Strandbergs forskning handlar bland annat om vår nuvarande teori för mikrokosmos, den så kallade standardmodellen, där 17 elementarpartiklar bygger upp materien. Problemet med modellen är bland annat att den saknar möjligheten att beskriva gravitation och mörk materia. Sara Strandbergs mål är att utvidga standardmodellen så att den blir mer heltäckande. Hon vill förstå vilka som är materiens minsta beståndsdelar och vilka krafter som verkar mellan dem. En del av Strandbergs forskning har bedrivits genom experiment vid partikelacceleratorn i CERN – samma accelerator där den så kallade Higgspartikeln upptäcktes 2012. Där har hon letat efter elementarpartiklar som förutsägs av olika utvidgningar av standardmodellen.
En tänkbar utvidgning är att det för varje elementarpartikel i standardmodellen finns en ”supersymmetrisk partikel” som har liknande egenskaper men en större massa. Den lättaste av dessa supersymmetriska partiklar skulle kunna vara den som utgör den mörka materien.

Se hennes forskningspresentation i samband med prisutdelningen vid KVA.

Kontakt:

 Epost strandberg@fysik.su.se

Tel 08-553 786 73

Webbplats

www.su.se/profiles/strandberg-1.188090

 

 

David Witt Nyström

Matematik: Han går från lokalt till globalt i geometri

David Witt Nyström, född 1980, är docent vid Göteborgs universitet

Han får priset i matematik för djupa och nyskapande arbeten i komplex analys med viktiga tillämpningar i komplex och algebraisk geometri.

Inom algebraisk geometri studerar man kurvor, ytor och objekt av högre dimensioner (så kallade mångfalder) som har det gemensamt att de definieras med hjälp av polynom. Ett exempel är cirkeln, som kan beskrivas som punkterna i planet där polynomet x^2+y^2-1 är noll. Även om just cirkeln är enkel att förstå kan mångfalder av detta slag vara ytterst intrikata, särskilt i högre dimensioner. 

Inom David Witt Nyströms specifika forskningsområde, Kählergeometri, fokuserar man på hur en mångfalds småskaliga form, dess krökning, hänger samman med dess storskaliga form, dess topologi. Förutom algebraiska metoder kräver detta avancerade verktyg från komplex analys. 

David Witt Nyström har bland annat bevisat en inom området känd förmodan (antagande). Den beskriver hur, i en specifik kontext, globala topologiska data bestäms av lokala krökningsegenskaper.

Ett annat huvudspår i hans forskning är Hele-Shaw-flödet, som beskriver hur en trögflytande vätska rör sig i ett tunt lager. Där ledde en oväntad koppling till Kählergeometri till ett omtalat motexempel till en välkänd förmodan.

– Jag är otroligt glad och hedrad av att ha blivit tilldelad Göran Gustafssonpriset, och det kommer helt klart ha en mycket stor betydelse för min fortsatta forskning, säger han.

Kontakt:
David Witt Nyström
wittnyst@chalmers.se
076-779 42 88

 

David Rydh

MATEMATIK: Han löser problem som betraktats som olösliga

David Rydh, född 1980, är professor i matematik vid KTH.

Han får priset för sina banbrytande resultat om algebraiska stackar.

David Rydh ägnar sig åt algebraisk geometri, ett mycket aktivt och brett fält inom matematiken som även har influenser från andra discipliner som fysik och strängteori. Hans forskningsområde tillhör den del som brukar benämnas moduliteori, ett område som har sin bakgrund i försöken att klassificera en given typ av objekt. Det kan till exempel vara linjer i ett plan, kurvor, ytor eller vektorknippen. Ofta har objekten som klassificeras olika symmetrier och då får modulirummet en mer komplicerad geometrisk struktur som kallas stack. David Rydhs forskning handlar just om moduliproblem och teorin för stackar. Han har visat hur de här objekten faktiskt ser ut och lyckats utveckla verktyg för att lösa moduliproblem som tidigare betraktats som olösliga. En annan viktig del av hans forskning rör birationell geometri av Deligne–Mumford stackar. Det är här frågan om att modifiera stackar på ett kontrollerat sätt för att kunna jämföra snarlika stackar.

– Att få Göran Gustafssonpriset känns väldigt stort. Det gör att jag verkligen kommer att kunna fokusera på min forskning och satsa helhjärtat på den framöver, säger han.

Kontakt: 073-974 06 35, dary@math.kth.se

Elizabeth Wulcan

Elizabeth Wulcan. Foto: Setta Aspström

Elizabeth Wulcan. Foto: Setta Aspström
Elizabeth Wulcan. Foto: Setta Aspström

MATEMATIK: I gränslandet mellan analys, algebra och geometri

Elizabeth Wulcan, född 1978, är biträdande professor i matematik vid Chalmers tekniska högskola.
Hon får priset för sina centrala och mångfacetterade arbeten i gränslandet mellan komplex analys och kommutativ algebra.

Elizabeth Wulcan använder verktyg från ett matematiskt område, analys, för att studera frågeställningar inom andra matematiska områden – geometri och algebra. Hon arbetar bland annat med att utveckla teorin för och tillämpningar av så kallade residyströmmar. Dessa kan användas för att representera grundläggande objekt i algebra och geometri (som till exempel kurvor och ytor).
Teorin som hon och hennes medförfattare har utvecklat har bland annat lett till nya resultat rörande effektiv polynomdivision som är ett klassiskt problem från början av 1900-talet. Den har också använts för att hitta ett helt nytt sätt att lösa den så kallade Cauchy-Riemanns ekvation, som spelar en fundamental roll inom komplex analys och geometrialgebra

Kontakt: 073-143 11 84, wulcan@chalmers.se

Petter Brändén

Petter Brändén, Foto: Jann Lipka

MATEMATIK: Utvecklade ny teori om positivitet

 Petter Brändén, född 1976, är professor i diskret matematik vid KTH.

Han får priset för sitt banbrytande arbete med att skapa en teori för positivitet hos polynom i flera variabler, med viktiga tillämpningar inom algebra, kombinatorik och sannolikhetskalkyl.

Petter Brändén har utvecklat en teori om samband mellan koefficienter och nollställen till polynom i flera variabler. Ett polynom är ett algebraiskt uttryck där flera olika termer har kombinerats genom addition, subtraktion och multiplikation.

Teorin kan tillämpas på en rad frågeställningar inom olika områden som kombinatorik, sannolikhetsteori, optimering, statistisk mekanik, datalogi och analys. Till exempel har Petter Brändén, tillsammans med andra forskare, utvecklat en teori för negativt beroende händelser i sannolikhetsteori, vilka modellerar frånstötande partiklar i statistisk mekanik.

Nyligen har Petter Brändén tillsammans med June Huh utvecklat en mer generell teori med tillämpningar i vitt skilda ämnen som algebraisk geometri, linjär algebra, statistisk mekanik och matroidteori. Ett resultat av deras arbete är lösningen av ett uppmärksammat problem inom matroidteori från 1972, den så kallade Masons förmodan.

Kontakt:
Epost:pbranden@kth.se

Tel 073-550 48 40

Webbplats

www.kth.se/profile/pbranden

Axel Målqvist

Axel Målqvist Foto: Maria Målqvist

MATEMATIK: Matematik för skräddarsydda material
Axel Målqvist, född 1978, är professor i matematik vid Göteborgs universitet.

Han får priset för banbrytande konstruktion och analys av beräkningsmetoder för kontinuum-mekaniska problem med snabbt varierande heterogena data, utan antagande om periodicitet eller separation av skalor.

Datorsimulering har fått en allt mer framträdande roll inom design av material med skräddarsydda egenskaper. Användningen av kompositmaterial är numer vanlig inom tillverkningsindustrin. Axel Målqvists forskning handlar om att utveckla och analysera tillförlitliga beräkningsmetoder som är anpassade just till heterogena material. Datorsimulering av sådana material innebär flera matematiska utmaningar, så som diskontinuiteter i data och variationer på multipla längdskalor. Målqvist använder numerisk och matematisk analys för att utveckla optimala beräkningsmetoder för att lösa partiella differentialekvationer med snabbt varierande data.

Se hans forskningspresentation i samband med prisutdelningen vid KVA.

Kontakt:
Epost:axel.malqvist@gu.se

Tel 031-772 35 99

Webbplats

www.gu.se/omuniversitetet/personal/?userId=xmalax

 

 

Robert Berman

Pristagare KVA
Foto: Rakel Berman

MATEMATIK: Hans matematiska metoder bygger oväntade broar

Göran Gustafssonpriset i matematik 2017 tilldelas Robert Berman, professor i matematik vid Chalmers tekniska högskola, född 1976.

Han får priset för sina banbrytande arbeten i komplex analys, Kählergeometri och statistisk mekanik.

Tack vare Einsteins allmänna relativitetsteori för gravitationen vet vi i dag att det universum vi lever i är krökt – närmare bestämt beskrivs vårt universums form med hjälp av geometrin av den fyrdimensionella form som kallas rum-tiden. Det är massfördelningen i universum, såsom galaxernas inbördes positioner, som bestämmer universums form – åtminstone delvis, för i Einsteins teori är till och med det tomma rummet krökt. Robert Berman utvecklar matematiska metoder som bland annat bygger en oväntad bro mellan Einsteins gravitationsteori och teorin för komplexa system. Ett av målen med hans forskning är att utveckla en modell där rum-tidens geometri träder fram som ett makroskopiskt fenomen ur ett underliggande mikroskopiskt komplext system. Idén är alltså – för att uttrycka det enkelt – att beskriva gravitationen som ett storskaligt fenomen som uppstår ur en stor mängd mikroskopiska händelser. Ungefär som tryck och temperatur hos en gas är en följd av de många små gasmolekylernas sammanlagda egenskaper. Hans forskning kan också leda till en ny matematisk förståelse för andra komplexa system, till exempel kall- och varmfronter inom meteorologin och turbulens, som faktiskt kan beskrivas av matematiska modeller som är besläktade med Einsteins ekvationer.

Robert Berman, matematikpristagaren, intervjuades av Sveriges Radio Vetandets värld 19 april 2017. Man kan lyssna på programmet på

Se hans forskningspresentation i samband med prisutdelningen vid KVA.

Hör hans intervju på Sveriges Radio, Vetandets Värld 19 april 2017.

Kontakt:
Epost:robertb@chalmers.se
Tel 031-772 35 53

Webbplats

https://www.chalmers.se/sv/personal/Sidor/robertb.aspx