Jonas Sellberg, KTH

Foto: Jonas Sellberg

Teknisk fysik. Jonas Sellberg är född 1985 i Stockholm. Han tog studenten 2004 från Norra Real och läste sedan civilingenjörsprogrammet i kemi och kemiteknik på KTH med inriktning mot organisk och fysikalisk kemi, där han tog examen 2009 efter utbytesår vid University of Tokyo och sommarutbyte vid Princeton University i USA. Han avlade doktorsexamen i kemisk fysik 2014 vid Stockholms universitet och fick Sigrid Arrhenius stipendium för ett framstående forskningsarbete efter tre år som gästforskare 2010-2013 vid SLAC National Accelerator Laboratory i Kalifornien. Under 2014-2015 var han postdoktor vid Uppsala universitet med fokus på biofysik. År 2016 återvände han till KTH som biträdande lektor vid Institutionen för tillämpad fysik.

Jonas Sellberg beskriver sin forskning så här: Ljuskällor som producerar koherent ljus har förändrat vårt samhälle sedan lasern uppfanns på 1960-talet. Lasrar är idag involverade i varje telefonsamtal och epost. Lasrar används också för att sekvensera DNA och behandla synfel på någon minut. För röntgenljus, d.v.s. ljus med väldigt kort våglängd som är jämförbar med avstånden mellan atomer, har uppfinningen av liknande ljuskällor dröjt. Det var först år 2005 som världens första mjukröntgenlaser togs i bruk vid DESY i Tyskland, och år 2009 blev världens första hårdröntgenlaser tillgänglig för användare vid SLAC i USA. De ultrasnabba röntgenpulserna med extremt hög intensitet har sedan dess använts av forskare världen över för att avbilda celler och virus, strukturbestämma proteiner och kartlägga elektroniska och magnetiska egenskaper hos atomer, molekyler och nanostrukturerade material. Min forskning har varit tätt sammankopplad med utvecklingen av röntgenlasern och jag har sedan 2010 varit involverad i över 40 olika experiment vid röntgenlaseranläggningar på de tre kontinenter där de hittills har byggts. Även om tillämpningarna har varierat så är experimenten huvudsakligen interdisciplinära och i gränslandet mellan fysik, kemi och biologi. Ofta handlar det om att få en inblick i kemiska och fysikaliska processer som sker på en ultrasnabb tidsskala jämförbar med tiden det tar för ljus att färdas tjockleken av ett tunt hårstrå. Jag har till exempel varit delaktig i att mäta strukturen och dynamiken av vätebindningar i underkylt vatten ned till -46 °C, avbilda virus och celler på nanonivå, och förstå hur den elektroniska strukturen förändrar sig under kemiska reaktioner, så som när fotosystem omvandlar vatten till syrgas och när kolmonoxid oxideras till koldioxid med hjälp av en katalysator. Samarbete är en central del av min forskning och jag är idag aktiv i den grupp av forskare som utvecklar en svensk röntgenlaser. På sikt har det potentialen att uppnå varje molekylfysikers dröm – att spela in filmer av makromolekylära kemiska reaktioner med atomär upplösning.

Gustafssonpriset till unga forskare vid Kungl tekniska högskolan och Uppsala universitet utgörs av ett forskningsbidrag på sammanlagt 2,5 miljoner kronor, under tre år. Pristagarna är högst 36 år. 

David Rydh, KTH

David Rydh

Teknisk fysik. David Rydh är född i Morgongåva 1980. Han tog studenten 1999 på Karlbergsgymnasiet i Åmål och började därefter på KTH Teknisk fysik med inriktning mot matematik, där han tog examen 2003. Han avlade sedan doktorsexamen i matematik 2008 vid KTH. Under 2009-2010 var han postdoktor vid UC Berkeley på anslag från Vetenskapsrådet. Därefter återvände han till matematikinstitutionen på KTH, först en kort tid som forskarassistent, sedan som biträdande lektor 2011 och nu universitetslektor (och docent) 2015. Rydh fick Göran Gustafssonpriset för unga forskare 2011 och Wallenbergpriset i matematik 2015.

David Rydh beskriver sin forskning så här: I matematik, liksom i naturvetenskap, är det viktigt att systematisera och klassificera. Ett välkänt exempel från antiken är klassificeringen av regelbundna polyedrar: de platonska kropparna. I mitt forskningsområde, algebraisk geometri, studerar man geometriska objekt som är definierade av polynomekvationer. Ett moduliproblem innebär att klassificera sådana geometriska objekt. Det kan till exempel vara linjer i ett plan eller kurvor. Till ett sådant problem söker vi en geometrisk lösning, ett modulirum, där varje punkt i modulirummet motsvarar en klass av objekten. Ofta har objekten man klassificerar symmetrier. För att då kunna lösa moduliproblemet behöver vi låta modulirummet vara en så kallad stack som har en mer komplicerad geometrisk struktur. En stor del av min forskning behandlar moduliproblem och teorin för stackar i algebraisk geometri. Ett viktigt verktyg som jag har utvecklat är Tannakadualitet som knyter samman teorin för algebraiska stackar med en till synes helt annan del av matematiken, monoidala kategorier. Med Tannakadualitet har jag löst moduliproblem som tidigare var olösta och givit en precis beskrivning av den lokala geometriska strukturen hos algebraiska stackar. Ett annat viktigt verktyg jag utvecklat är stackiga uppblåsningar som på ett kontrollerat sätt modifierar stackar. Det visar sig att alla slags modifikationer går att beskriva med hjälp av stackiga uppblåsningar. Eftersom de senare är mycket explicita blir alla modifikationer hanterbara.

Gustafssonpriset till unga forskare vid Kungl tekniska högskolan och Uppsala universitet utgörs av ett forskningsbidrag på sammanlagt 2,5 miljoner kronor, under tre år. Pristagarna är högst 36 år. 

Ilaria Testa, KTH

Ilaria Testa
Ilaria Testa

Teknisk fysik. Ilaria Testa är född i Genua, Italien 1981. Hon avlade examen i fysik samt doktorsexamen i biofysik vid Università di Genova år 2009. Efter postdoktorsvistelse 2009-2014 vid Department of Nanobiophotonics, Max Planck Institute for Biophysical Chemistry Göttingen (under ledning av nobelpristagaren i kemi 2014, Stefan Hell) flyttade Ilaria Testa till Science for Life Laboratory (SciLifeLab) och blev 2015 biträdande lektor vid institutionen för Tillämpad fysik, KTH.

Ilaria Testa beskriver sin forskning så här:Medan traditionell ljusmikroskopis spatiala upplösning begränsas till 200 nm av diffraktionsgränsen så fokuserar min forskning på utveckling av nya typer av mikroskop som möjliggör avbildning på nanonivå med en upplösning av 10-20 nm. Bland annat skapade jag en mikroskopiplattform baserad på stokastisk växling av enstaka fluorescenta molekyler med den unika möjligheten att separera dem med hjälp av ratiometrisk spektral detektion. Jag rörde mig sedan mot forskningsområdet som behandlar avbildning av levande celler och var en av pionjärerna av RESOLFT-mikroskopi, en metod som lägger vikt vid att vara minimalt invasiv för att kunna observera levande biologiska system med ej tidigare sedd spatial upplösning. Tillsammans med ett interdisciplinärt team av biologer och fysiker lyckades jag med att tillämpa RESOLFT-konceptet i levande nervceller och till och med vävnader genom att använda olika typer av fluorescerande protein. Vår studie som publicerades i Nature visade för första gången RESOLFT-mikroskopis potential för avbildning av levande celler med precision på nanoskala och minimala belysningsintensiteter. RESOLFT blev också framgångsrikt tillämpat för att avbilda dendritiska utskotts dynamik i levande hjärnvävnad, över flera timmars observation. Nyligen har jag utvecklat denna plattform för avbildning i flera färger samt observation av levande människoceller som var endogeniskt märkta med fluoroforer genom CRISP-Cas9-systemet. Vi fokuserar nu på utvecklingen av nästa generations mikroskop som kommer att möjliggöra precis identifiering av biologiska molekyler beroende på deras positioner, mängd och dynamik, allt i deras naturliga miljö. Speciell fokus kommer att läggas vid att undersöka den spatiala organisationen och funktionaliteten av nervcellsproteiner i relevanta biologiska system, allt på en nanoskala.

Gustafssonpriset till unga forskare vid Kungl tekniska högskolan och Uppsala universitet utgörs av ett forskningsbidrag på sammanlagt 2,5 miljoner kronor, under tre år. Pristagarna är högst 36 år. 

Tove Fall, Medicin, UU

Pristagare 2016
Tove Fall
Foto: Uppsala universitet

Medicin. Tove Fall är född 1979 i Göteborg och växte upp i Huddinge söder om Stockholm. Hon studerade veterinärmedicin vid Sveriges Lantbruksuniversitet (SLU) och tog veterinärexamen 2005. Efter en kortare tid som veterinär vid smådjurssjukhus i Stockholm påbörjade hon sin forskarutbildning vid SLU och försvarade 2009 sin avhandling om diabeteskaraktärisering hos hund. Hon var postdoktor i genetisk epidemiologi vid Institutionen för medicinsk epidemiologi och biostatistik, Karolinska Institutet, 2010-2012. Sedan 2013 har hon verkat vid Institutionen för medicinska vetenskaper vid Uppsala universitet. Hon blev utnämnd till docent i epidemiologi 2013 och innehar sedan 2014 en forskarassistenttjänst i diabetesepidemiologi. Tove leder en forskargrupp som för närvarande består av fyra doktorander.

Tove Fall beskriver sin forskning så här:
Samhället står inför en stor folkhälsoutmaning då förekomsten av typ 2 diabetes ökar kraftigt globalt. År 2035 beräknas över en halv miljard människor leva med sjukdomen. Patienter med diabetes riskerar att drabbas av en lång rad allvarliga följdsjukdomar. Det är därför av största vikt för ett effektivt förebyggande arbete att tidigt kunna identifiera de personer som har högst risk och de mekanismer som leder till diabetes och dess följdsjukdomar.

Jag och min forskargrupp använder oss av stora studiegrupper och detaljerade molekylära analyser för att identifiera de viktigaste molekylära markörerna för diabetesutveckling och de livsstilsfaktorer som bidrar till diabetesutvecklingen. Exempel på de molekylära verktyg vi använder oss av i storskaliga befolkningsstudier är mätning av genetisk variation, mätning av små molekyler i blod och urin som kallas ”metabolomik”, karaktärisering av tarmfloran och mätning av olika proteiner i blodet. I de studier där vi studerar livsstilsfaktorer såsom fetma, antibiotikaanvändning och husdjursinnehav använder vi oss av registerutdrag från svenska nationella register samt information från stora biobanker. Med hjälp av stödet från Göran Gustafssons stiftelse kommer jag kunna föra in nya kompetenser i min forskargrupp och få mer utrymme att bedriva spännande forskning.

Gustafssonpriset till unga forskare vid Kungl tekniska högskolan och Uppsala universitet utgörs av ett forskningsbidrag på sammanlagt 2,5 miljoner kronor, under tre år. Pristagarna är högst 36 år. 

Maurice Duits, KTH

Maurice Duits
Maurice Duits

Teknisk fysik. Maurice Duits växte upp i Nederländerna och studerade tillämpad matematik vid Eindhoven University of Technology, där han tog examen 2004. Han avlade doktorsexamen i matematik 2008 vid KU Leuven i Belgien. Därefter var han Taussky-Todd instructor vid California Institute of Technology. År 2011 kom Duits till KTH där han fått stöd genom ett VR Young Researcher grant. Han utnämndes till universitetslektor i matematik vid Stockholms universitet 2014 och återvände till matematikinstitutionen vid KTH 2015.

Maurice Duits beskriver sin forskning så här:
Många komplexa system i matematik och teoretisk fysik är ofta svåra att studera i detalj. Men när dessa system är mycket stora uppvisar de ofta mönster som inte beror på modellens exakta karakteristiska drag utan bara på vissa faktorer. Samma mönster kan därför uppträda i modeller som kan verka ganska olika – ett fenomen som kallas universalitet. En bärande idé i mitt forskningsområde är att analysera förenklade matematiska modeller som förväntas uppvisa universella mönster vilka också finns i mer komplicerade system, så som energinivåerna i tunga atomer och nollställena till Riemanns zeta-funktion. Genom att använda moderna matematiska tekniker från (komplex) analys hoppas vi att kunna rigoröst visa förväntade universalitetsrelationer, finna nya uppföranden och allmänt få en djupare insikt i universalitetsfenomen. Mycket av min tidigare forskning handlar om utvecklingen av Riemann-Hilbert-metoden, som är ett viktigt verktyg när det gäller att visa universalitet. På senare tid har jag fokuserat på en rigorös analys av fluktuationer i slumpmässiga ytor och gränsytor genom att använda linjär statistik och utveckla en ny matrisbaserad metod.

Gustafssonpriset till unga forskare vid Kungl tekniska högskolan och Uppsala universitet utgörs av ett forskningsbidrag på sammanlagt 2,5 miljoner kronor, under tre år. Pristagarna är högst 36 år. 

Andreas Hellander, UU

Andreas Hellander
Andreas Hellander

Teknisk fysik. Andreas Hellander är född 1982 i Arjeplog. Han avlade studentexamen i Arjeplog 2000, blev civilingenjör i molekylär bioteknik vid Uppsala Universitet 2006 och disputerade i beräkningsvetenskap 2011. Efter två år som postdoktor vid University of California Santa Barbara tillträdde han 2013 en tjänst som lektor i beräkningsvetenskap vid avdelningen för beräkningsvetenskap, Institutionen för informationsteknologi, Uppsala universitet. Han är sedan 2014 docent i beräkningsvetenskap.

Andreas Hellander beskriver sin forskning så här:
Ett tema i min forskning i beräkningsvetenskap och systembiologi är utvecklandet av noggranna och effektiva metoder för att simulera biokemiska reaktionsnätverk med stokastiska modeller. Stokastiska modeller har i beräkningssystembiologin visat sig vara mer användbara än traditionellt använda differentialekvationer när man vill beskriva cellulära system med väldigt låga antal av nyckelproteiner så som transkriptionsfaktorer. Med kvantitativa modeller kan vi generera hypoteser för hur molekylära nätverk fungerar och hur de skulle reagera på olika typer av extern påverkan, och vi kan studera teoretiska egenskaper hos olika cellulära kontrollsystem. Den inneboende skalseparationen som förekommer i sådana system gör simuleringar mycket tidskrävande, och en stor del av min tidigare forskning har handlat om så kallade multiskalmetoder för att konstruera mer effektiva algoritmer. I min grupp är beräkningsmjukvara en central del av verksamheten. Genom öppen källkod kan de senaste algoritmerna snabbare nå potentiella användare och på så sätt snabbare möjliggöra ny domänspecifik forskning. Ofta är det dock ett stort steg från öppen källkod till generellt användbar mjukvara. På senare tid har molnteknologi gjort det enklare både att utveckla och leverera mjukvara till andra forskare. Vi har nyligen demonstrerat hur man kan utveckla molnmjukvara som gör även storskaliga beräkningsexperiment mer lättillgängliga, mer skalbara och lättare att reproducera. Det senare är ett ofta ett problem i praktiken för forskning som bygger på nya avancerade algoritmer och storskaliga beräkningar. Tack vare priset från Göran Gustafssons stiftelse får jag möjlighet att expandera min forskning i nya riktningar. I ett nytt projekt ska vi undersöka möjligheten att utveckla smarta stödsystem för modellutforskning. Baserat på molnteknologi och metodik från maskininlärning hoppas vi utveckla serviceorienterade mjukvarukomponenter som möjliggör mycket mer interaktiva och effektiva sätt att utforska biologiska system med hjälp av modellering och simulering än vad som är möjligt idag.

Gustafssonpriset till unga forskare vid Kungl tekniska högskolan och Uppsala universitet utgörs av ett forskningsbidrag på sammanlagt 2,5 miljoner kronor, under tre år. Pristagarna är högst 36 år. 

Chong Qi, KTH

Pristagaren Chong Qi
Chong Qi

Teknisk fysik. Chong Qi är född 1983 i Jinan, Kina. Han avlade doktorsexamen vid Pekings universitet 2009 och kom till KTH genom stöd av Vetenskapsrådets bidrag till anställning som postdoktor i Sverige. Han fortsatte sin forskning på KTH med stöd från kärnfysikgruppen på KTH och ett projektbidrag för unga forskare frän Vetenskapsrådet. Sedan 2014 är han biträdande lektor vid Institutionen för fysik, KTH. Qi blev docent 2015 inom området teoretisk kärnfysik.

Chong Qi beskriver sin forskning så här:
Som teoretiker arbetar jag främst med modeller av den växelverkan som uppstår mellan partiklar i kvantmekaniska mångkropparsystem. Forskningen syftar till att utveckla nya metoder för atomkärnan för att beskriva hur komplexa skeenden uppstår ur enkla komponenter och hur komplexa krafter kan ge upphov till enkla rörelser. Atomkärnan skapas i våldsamma processer i universum. För att kunna förstå till exempel varför det finns så lite guld och så mycket kisel på jorden krävs kunskap om exotiska atomkärnor, som har mycket kort livslängd. Den senaste forskningen avser att beskriva egenskaper och uppbyggnad av exotiska och extremt kortlivade atomkärnor med helt andra relativa sammansättningar av protoner och neutroner än de stabila och långlivade atomkärnorna. Nära de gränserna för existens har man funnit att kärnmaterian kan ha mycket ovanliga egenskaper. I dessa kärnor kan man ha en växelverkan mellan bundna och obundna tillstånd liksom att de tillfälligt kan befinna sig i obundna tillstånd. Man kan också med förfinad experimentell teknik nå tunga kärnor med samma antal protoner och neutroner, vilka har visat oväntat tecken på en ny struktur, där parvisa neutron-proton-korrelationer dominerar. Dessutom kan de här kärnorna genomgå nya former av sönderfall som vi studerar med vår formalism. Traditionella kärnmodeller, utvecklade för att beskriva kärnor i närheten av stabilitetslinjen, kan inte beskriva fenomen som händer i obundna, instabila tillstånd. Det övergripande målet för mitt Göran Gustafsson-projekt är att tillämpa modellen som jag har utvecklat för att studera de sällsynta nedbrytningsprocesserna. Arbetet har hittills resulterat i över 70 vetenskapliga publikationer. Jag har handlett två doktorander och en master-student.

Gustafssonpriset till unga forskare vid Kungl tekniska högskolan och Uppsala universitet utgörs av ett forskningsbidrag på sammanlagt 2,5 miljoner kronor, under tre år. Pristagarna är högst 36 år.