Rickard Sandberg

Rickard Sandberg Foto: Ulf Sirborn

MOLEKYLÄR BIOLOGI: Molekylära bilder av enskilda celler

Rickard Sandberg, född 1977, är professor i molekylär genetik vid Karolinska Institutet.

Han får priset för sina innovativa studier av genuttryck i enskilda celler.

Rickard Sandberg har utvecklat banbrytande metodik för att avläsa geners aktivitet i enskilda celler och använt tekniken till att undersöka hur vår arvsmassa regleras. Våra vävnader består av många olika typer av celler som växelverkar med varandra på intrikata sätt för att utföra olika funktioner. Tidigare metoder som studerat geners aktivitet har varit begränsade till medelvärden över tusentals olika typer av celler i vävnader. Rickard Sandberg har utvecklat metodik som möjliggör att vävnader analyseras på nivån av enskilda celler, vilket har lett till stora nya insikter om människokroppens celltyper i friska och sjuka tillstånd. Rickards forskning fokuserar på att förstå de molekylära processer som reglerar människans arvsmassa genom att studera storskaliga genetiska aktivitetsmönster över många typer av enskilda celler. Han vill mer specifikt påvisa hur ofta en gen är aktiv och hur många RNA-molekyler som produceras vid varje aktivt tillfälle, och slutligen komma underfund med hur dessa processer är kodade i vår arvsmassa. En förståelse för vår arvsmassas egna reglersystem skulle ge oss viktiga insikter om vilken variation som den genererar inom och mellan celler, samt om dessa kan påverka mera komplexa fenotyper. Det skulle även öppna upp för förbättrad förmåga att konstruera syntetiska genetiska kretsar inom bioteknologi.

Se hans forskningspresentation i samband med prisutdelningen vid KVA.

Kontakt:
Epost rickard.sandberg@ki.se

Tel 08-524 839 86, 070-271 98 77

Webbplats

https://ki.se/people/ricsan

Yenan Bryceson

Yenan Bryceson Foto: Petter Woll

MEDICIN: Forskning som kan rädda liv

Yenan Bryceson, född 1976, är forskare vid Karolinska Institutet.

Han får priset för sina framstående studier av cytotoxiska lymfocyter, deras reglering och funktion vid hälsa och sjukdom.

Yenan Bryceson, forskare vid Karolinska Institutet, studerar hur immunförsvaret känner igen infekterade och maligna celler och hur medfödda immunbrister kan orsaka livshotande sjukdomar. Bryceson har utvecklat ett blodtest för att screena patienter med misstänkt immunbrist och ett genetisk test för att screena nyfödda barn för den allvarligaste sjukdomsorsakande mutationen i Sverige. Ambitionen är att testet ska ingå i PKU-provet, som tas på alla nyfödda barn i Sverige för att hitta medfödda sjukdomar där tidig behandling är avgörande för hur barnen ska klara sig. Medfödda defekter som påverkar funktioner hos immunförsvarets lymfocyter, så kallade cytotoxiska lymfocyter, ger upphov till svår, ofta livshotande, sjukdom hos nyfödda. Dessa sjukdomar liknar cancersjukdomar i det att patienterna drabbas av en icke-kontrollerad tillväxt av immunceller, främst T-lymfocyter och makrofager. Tillstånden kan med blandad framgång hållas i schack med läkemedel som steroider och cytostatika, och i vissa fall behandlas med så kallad hematopoetisk stamcellstransplantation. Behandlingarna orsakar inte sällan komplikationer. Baserat på ny kunskap om cytotoxiska lymfocyters aktivering och funktion har Yenan Bryceson inlett ett projekt för att i detalj kartlägga immunbristsjukdomar. Syfte är att ta fram förfinad diagnostik samt nya laboratorieparametrar som bättre kan vägleda behandlingsval vid immunbristsjukdom.

Se hans forskningspresentation i samband med prisutdelningen vid KVA.

Kontakt:
Epost yenan.bryceson@ki.se

Tel 070-443 19 44

Webbplats

https://ki.se/people/yenbry

Belén Martín-Matute

Belén Martín Matute Foto: Anneli Larsson

KEMI: Framtidens förnyelsebara resurser

Belén Martín-Matute, född 1975, är professor i organisk kemi vid Stockholms universitet.

Hon får priset för utveckling av nya metoder för metallorganisk katalys.

Belén Martín-Matute utvecklar nya katalytiska processer för att skapa kol-kol och kol- heteroatombindningar. Det handlar bland annat om att omvandla vatten och koldioxid till kemiska produkter utan att behöva hantera farliga mellanled. Heteroatomer, som syre, kväve och halogener (fluor, klor, brom och jod) är vanligt förekommande i läkemedel och jordbrukskemikalier. De bindningarna är därför extra intressanta att skapa. I sin forskning använder Belén Martín-Matute en mängd olika metallkatalysatorer, och även metallfria sådana (så kallade organokatalysatorer). Genom att finjustera de elektroniska och steriska egenskaperna hos katalysatorer kan aktiviteten och selektiviteten kontrolleras. Den huvudsakliga delen av Belén Martín-Matutes forskning är att prioritera hållbarhet
i metoderna som utvecklas av hennes forskargrupp. Hon använder miljövänliga lösningsmedel och mångsidiga, stabila och strukturellt enkla men fortfarande effektiva katalysatorer. Hennes metoder ger högt utbyte vid måttliga temperaturer. Hennes forskning fokuserar även på förädling av biomassa och koldioxid för att undvika bildandet av avfall och för att kunna hitta nya förnybara resurser för kemiindustrin.

Se hennes forskningspresentation i samband med prisutdelningen vid KVA.

Kontakt:

 Epost belen.martin.matute@su.se

 Tel 08-16 24 38, 076 247 86 87

Webbplats 

www.organ.su.se/bm

 

Sara Strandberg

Sara Strandberg Foto: Eva Dalin

FYSIK: Hon söker svaret på universums gåtor

Sara Strandberg, född 1977, är lektor vid Stockholms universitet.

Hon får priset för sin experimentella forskning om Supersymmetri och dess potentiella roll för den Mörka materian. Genom att hon ansvarar för detektorsystem samt att hon kombinerar analysarbete och metodutveckling med nya koncept för utvärdering av data har hon en ledande roll i ett fält där forskningen sker i stora samarbeten.

Sara Strandberg är verksam inom experimentell partikelfysik och har en viktig roll inom ATLAS-experimentet vid CERN, i Schweiz. Om hon hittar bevis för att supersymmetriska partiklar existerar kommer hon kunna lösa en rad av universums gåtor. Sara Strandbergs forskning handlar bland annat om vår nuvarande teori för mikrokosmos, den så kallade standardmodellen, där 17 elementarpartiklar bygger upp materien. Problemet med modellen är bland annat att den saknar möjligheten att beskriva gravitation och mörk materia. Sara Strandbergs mål är att utvidga standardmodellen så att den blir mer heltäckande. Hon vill förstå vilka som är materiens minsta beståndsdelar och vilka krafter som verkar mellan dem. En del av Strandbergs forskning har bedrivits genom experiment vid partikelacceleratorn i CERN – samma accelerator där den så kallade Higgspartikeln upptäcktes 2012. Där har hon letat efter elementarpartiklar som förutsägs av olika utvidgningar av standardmodellen.
En tänkbar utvidgning är att det för varje elementarpartikel i standardmodellen finns en ”supersymmetrisk partikel” som har liknande egenskaper men en större massa. Den lättaste av dessa supersymmetriska partiklar skulle kunna vara den som utgör den mörka materien.

Se hennes forskningspresentation i samband med prisutdelningen vid KVA.

Kontakt:

 Epost strandberg@fysik.su.se

Tel 08-553 786 73

Webbplats

www.su.se/profiles/strandberg-1.188090

 

 

Axel Målqvist

Axel Målqvist Foto: Maria Målqvist

MATEMATIK: Matematik för skräddarsydda material
Axel Målqvist, född 1978, är professor i matematik vid Göteborgs universitet.

Han får priset för banbrytande konstruktion och analys av beräkningsmetoder för kontinuum-mekaniska problem med snabbt varierande heterogena data, utan antagande om periodicitet eller separation av skalor.

Datorsimulering har fått en allt mer framträdande roll inom design av material med skräddarsydda egenskaper. Användningen av kompositmaterial är numer vanlig inom tillverkningsindustrin. Axel Målqvists forskning handlar om att utveckla och analysera tillförlitliga beräkningsmetoder som är anpassade just till heterogena material. Datorsimulering av sådana material innebär flera matematiska utmaningar, så som diskontinuiteter i data och variationer på multipla längdskalor. Målqvist använder numerisk och matematisk analys för att utveckla optimala beräkningsmetoder för att lösa partiella differentialekvationer med snabbt varierande data.

Se hans forskningspresentation i samband med prisutdelningen vid KVA.

Kontakt:
Epost:axel.malqvist@gu.se

Tel 031-772 35 99

Webbplats

www.gu.se/omuniversitetet/personal/?userId=xmalax

 

 

Jonathan Scragg, Teknisk fysik, UU

Foto: Jonathan Scragg

Teknisk fysik. Jonathan Staaf Scragg är född i Kent, England 1983. Han avlade examen i naturvetenskap vid University of Cambridge år 2005 och doktorsexamen i fysikalisk kemi vid University of Bath år 2010. Sedan dess har Jonathan varit forskare och senare docent vid avdelningen för fasta tillståndets elektronik vid Uppsala universitet, inom forskningsgruppen för tunnfilmssolceller.

Jonathan Staaf Scragg beskriver sin forskning så här: Min forskning inspireras av en mycket allvarlig teknisk utmaning samt min passion för materialvetenskap. Utmaningen är det akuta behovet av att övergå till förnybara energikällor för att bekämpa klimatförändringen. En av de mest lovande lösningarna idag är att använda energin i solljuset, vilken kan fångas av solceller. Numera har solceller blivit billiga nog att kunna konkurrera med fossilbränsle i större delar av världen och snart även på nordliga breddgrader som Sverige. Det finns emellertid stora utmaningar med att snabbt ersätta terawattnivåer i den befintliga globala elproduktionen med solceller. Liksom för alla produkter som vi skapar så finns det visst utsläpp av koldioxid (CO2) i samband med produktion av solceller, inklusive utvinning av de nödvändiga råvarorna. Även om dessa utsläpp återbetalas flera gånger under solcellens livstid så skulle en massiv och snabb ökning av solcellstillverkning ändå innebära en allvarlig belastning på miljön. Att förbättra solcellstekniken genom att höja verkningsgraden, minska konsumtionen av material och öka livslängden skulle vara mycket effektiva sätt att reducera problemen. Visionen som driver mitt arbete är att nya och bättre material för solceller skulle uppnå dessa mål och eliminera hindren i vår globala övergång till rena energikällor. Jag använder mig av avancerade syntesmetoder för att utforska nya material som först designas och gallras i datorsimuleringar. Dessa material ska kunna fånga energin från den delen av solspektrumet som dagens solceller använder relativt dåligt. Vi har identifierat sådana material som har extrema prestanda per gram, utmärkt kemisk stabilitet och som inte innehålla några sällsynta grundämnen. Om dessa material kan optimeras mot tillämpning i en solcell så kan de leda till mycket bättre verkningsgrad och därmed bidra till en hållbar tillväxt för solenergiproduktion i framtiden.

Gustafssonpriset till unga forskare vid Kungl tekniska högskolan och Uppsala universitet utgörs av ett forskningsbidrag på sammanlagt 2,5 miljoner kronor, under tre år. Pristagarna är högst 36 år. 

Gustaf Christoffersson, Medicin, UU

Foto: Gustaf Christoffersson

Humanbiologi. Gustaf Christoffersson är född1982 i Malmö och tog studenten vid Lars Kaggskolan i Kalmar 2001. Han studerade vid apotekarprogrammet vid Uppsala universitet och fick apotekarlegitimation 2007. Parallellt med dessa studier deltog han i forskningsprojekt vid Institutionen för medicinsk cellbiologi i Uppsala där han sedan fortsatte sin forskarutbildning och disputerade 2013 med en avhandling om hur immunceller påverkar nybildningen av blodkärl i en ny experimentell modell som utvecklats av honom själv. Han var 2014-2016 postdoktor vid La Jolla Institute for Allergy and Immunology i Kalifornien, där han studerade immunreglering vid typ 1 diabetes på ett anslag från Vetenskapsrådet. Han återvände sedan till Uppsala universitet där han byggt upp ett laboratorium för forskning kring typ 1 diabetes. Sedan 2018 är han genom Svenska Sällskapet för Medicinsk Forsknings (SSMF:s) stora anslag anställd som forskare vid Institutionen för medicinsk cellbiologi.

Gustaf Christoffersson beskriver sin forskning så här: Vad som orsakar typ 1 diabetes är fortfarande oklart. Sjukdomen kan drabba vem som helst oavsett ålder, kön eller tidigare sjukdom i familjen. De exakta mekanismerna bakom hur immunförsvaret fungerar vid destruktionen av de insulinproducerande betacellerna och hur det regleras är inte heller kända. Dessa kunskapshål gör att effektiva behandlingar och botemedel idag saknas för denna sjukdom som idag ökar i världen. I min forskning fokuserar jag på den reglering av immunsystemet som pågår i mikromiljön vid de insulinproducerande betacellerna. Kring dessa celler finns vid insjuknande i typ 1 diabetes en lång rad olika immunceller, men hur dessa interagerar med varandra och med betacellerna är oklart. I min forskning använder jag nyskapande tredimensionell mikroskopi för att kunna studera dessa förlopp i realtid i avancerade musmodeller. Informationen från sådana experiment kan förhoppningsvis leda till att vi lär oss mer om vad som styr immunförsvaret när det förstör betacellerna och därmed leda till effektiva behandlingar. Genom stödet från Göran Gustafssons stiftelse kommer jag att kunna utöka min forskargrupp för att ytterligare kunna fördjupa vår kunskap om denna sjukdom.

Gustafssonpriset till unga forskare vid Kungl tekniska högskolan och Uppsala universitet utgörs av ett forskningsbidrag på sammanlagt 2,5 miljoner kronor, under tre år. Pristagarna är högst 36 år. 

Lucie Delemotte, KTH

Foto: Lucie Delemotte

Teknisk fysik. Lucie Delemotte är född 1985 i nordöstra Frankrike. Hon avlade examen inom kemi och doktorerade inom beräkningskemi vid Université de Lorraine 2011. Efter en vistelse som postdoktor vid Institute for Computational Molecular Science vid Temple University, Philadelphia, USA, samt vid Laboratory for Computational Biochemistry and Chemistry vid EPFL, Lausanne, Schweiz, med stöd från ett Marie Curie Fellowship, flyttade Lucie Delemotte till Science for Life Laboratory (SciLifeLab), Solna, som forskarassistent vid avdelningen för Tillämpad fysik vid KTH.

 

Lucie Delemotte beskriver sin forskning så här: För att kommunicera med sin omgivning använder biologiska celler membranproteiner, så som exempelvis jonkanaler. Dessa underlättar transport av joner över membranet och möjliggör fortplantning av elektriska signaler. Genetiska mutationer i dessa proteiner leder till dysfunktion och en mängd ärftliga sjukdomar, till exempel hjärtarytmier och epilepsi. För att förstå detaljerna kring hur dessa molekylära mekanismer verkar använder jag  så kallade molekyldynamiska (MD) simuleringar. Dessa simuleringar har en atomär spatial upplösning, samt en tidsupplösning av storleksordningen femtosekunder. Begränsningarna för metoden återfinnes således i de längre tidsskalorna, det vill säga att generera simuleringar tillräckligt långa för att kunna representera biologiska processer. Jag har stort fokus på att utveckla protokoll för avancerade molekyldynamiska simuleringar vilka kringgår detta hinder och tillåter observation av just dessa biologiskt relevanta fenomen. Det gemensamma arbetet inom Delemotte Lab möjliggör en djupare förståelse av det komplexa samspelet mellan membranproteiner och deras omgivning, framförallt lipidmolekylerna i cellmembranet. Delemotte Lab tacklar också utmaningar som att försöka förstå hur genetiska mutationer, vilka kan orsaka sjukdomar likt hjärtarytmier, Att förstå orsakerna till varför proteiner uppvisar avvikande funktion eller beteende kan bland annat användas för att utveckla mer effektiva läkemedel.

Gustafssonpriset till unga forskare vid Kungl tekniska högskolan och Uppsala universitet utgörs av ett forskningsbidrag på sammanlagt 2,5 miljoner kronor, under tre år. Pristagarna är högst 36 år. 

Jonas Sellberg, KTH

Foto: Jonas Sellberg

Teknisk fysik. Jonas Sellberg är född 1985 i Stockholm. Han tog studenten 2004 från Norra Real och läste sedan civilingenjörsprogrammet i kemi och kemiteknik på KTH med inriktning mot organisk och fysikalisk kemi, där han tog examen 2009 efter utbytesår vid University of Tokyo och sommarutbyte vid Princeton University i USA. Han avlade doktorsexamen i kemisk fysik 2014 vid Stockholms universitet och fick Sigrid Arrhenius stipendium för ett framstående forskningsarbete efter tre år som gästforskare 2010-2013 vid SLAC National Accelerator Laboratory i Kalifornien. Under 2014-2015 var han postdoktor vid Uppsala universitet med fokus på biofysik. År 2016 återvände han till KTH som biträdande lektor vid Institutionen för tillämpad fysik.

Jonas Sellberg beskriver sin forskning så här: Ljuskällor som producerar koherent ljus har förändrat vårt samhälle sedan lasern uppfanns på 1960-talet. Lasrar är idag involverade i varje telefonsamtal och epost. Lasrar används också för att sekvensera DNA och behandla synfel på någon minut. För röntgenljus, d.v.s. ljus med väldigt kort våglängd som är jämförbar med avstånden mellan atomer, har uppfinningen av liknande ljuskällor dröjt. Det var först år 2005 som världens första mjukröntgenlaser togs i bruk vid DESY i Tyskland, och år 2009 blev världens första hårdröntgenlaser tillgänglig för användare vid SLAC i USA. De ultrasnabba röntgenpulserna med extremt hög intensitet har sedan dess använts av forskare världen över för att avbilda celler och virus, strukturbestämma proteiner och kartlägga elektroniska och magnetiska egenskaper hos atomer, molekyler och nanostrukturerade material. Min forskning har varit tätt sammankopplad med utvecklingen av röntgenlasern och jag har sedan 2010 varit involverad i över 40 olika experiment vid röntgenlaseranläggningar på de tre kontinenter där de hittills har byggts. Även om tillämpningarna har varierat så är experimenten huvudsakligen interdisciplinära och i gränslandet mellan fysik, kemi och biologi. Ofta handlar det om att få en inblick i kemiska och fysikaliska processer som sker på en ultrasnabb tidsskala jämförbar med tiden det tar för ljus att färdas tjockleken av ett tunt hårstrå. Jag har till exempel varit delaktig i att mäta strukturen och dynamiken av vätebindningar i underkylt vatten ned till -46 °C, avbilda virus och celler på nanonivå, och förstå hur den elektroniska strukturen förändrar sig under kemiska reaktioner, så som när fotosystem omvandlar vatten till syrgas och när kolmonoxid oxideras till koldioxid med hjälp av en katalysator. Samarbete är en central del av min forskning och jag är idag aktiv i den grupp av forskare som utvecklar en svensk röntgenlaser. På sikt har det potentialen att uppnå varje molekylfysikers dröm – att spela in filmer av makromolekylära kemiska reaktioner med atomär upplösning.

Gustafssonpriset till unga forskare vid Kungl tekniska högskolan och Uppsala universitet utgörs av ett forskningsbidrag på sammanlagt 2,5 miljoner kronor, under tre år. Pristagarna är högst 36 år.