Henrik Ehrsson

Henrik Ehrsson
Foto:Mikael Wallerstedt

MEDICIN: Kroppsillusioner som hjälper oss förstå hjärnan

Henrik Ehrsson, professor i kognitiv neurovetenskap vid Karolinska Institutet, född 1972, använder sig av en rad sofistikerade metoder i sin forskning som befinner sig i gränslandet mellan neurovetenskap och psykologi.

Han får priset för sina grundläggande och eleganta studier av funktioner i hjärnan kopplade till människans uppfattning av den egna kroppen.

I en mycket uppmärksammad serie experiment har Henrik Ehrsson visat hur man kan framkalla illusioner av att vara utanför sin kropp (”utanförkroppen-illusionen”) eller uppleva en annan persons kropp som sin egen (”kroppsbytes-illusionen”). Frågan som Henrik Ehrsson ställer är hur hjärnan integrerar sinnesintryck från ögon, hud och muskler för att skapa en inre modell av den egna kroppen i rummet. På ett uppfinningsrikt sätt kombinerar han nyupptäckta kroppsillusioner med mätningar av hjärnans aktivitet.

Ehrssons resultat är viktiga för nya tekniska applikationer som bygger på principen att projicera kroppstillhörighetskänsla på konstgjorda kroppsdelar: en ny typ av överarmsprotes som känns precis som en riktig hand, datorgenererade virtuella kroppar som en totalförlamad person kan lära sig styra och uppleva som del av sig själv, samt nya metoder att styra människo-liknande robotar. Inom psykiatrin öppnar rönen upp för helt nya sätt att tänka kring och undersöka de omfattande störningar i kroppsuppfattning och jagkänsla som patienter med exempelvis schizofreni uppvisar.

Se hans forskningspresentation i samband med prisutdelningen vid KVA.

Kontakt:
Epost henrik.ehrsson@ki.se 
Tel 08-524 872 31

Webbplats

www.ehrssonlab.se/henrik.php 

Val Zwiller

Wal Zwiller
Foto: Kristina Hedtjärn

FYSIK: Kvantoptik på nanoskala

Val Zwiller, professor i tillämpad fysik vid KTH, född 1971, kombinerar i sin forskning optik och nanoteknologi. I hans avancerade labbutrustning finns framtidens tekniska verktyg som kvantljuskällor och kvantdetektorer

Han får priset för sin innovativa forskning inom kvantoptik och nanofysik som kan leda fram till djupare förståelse av den fundamentala kvantfysiken och viktiga öppningar mot framtida kvantkommunikation.

Val Zwiller kom till KTH 2015 för att bygga upp en ny forskargrupp på området kvantfysik med nanostrukturer. Han hade då bott tio år i Holland men är ursprungligen från Frankrike. I sin doktorsavhandling vid Lunds universitet hade han visat att nanostrukturer kan användas för att generera enstaka fotoner, vilket gör det möjligt att kontrollera ljus på den mest grundläggande nivån. Hans nuvarande forskning är inriktad på mer avancerad kvantoptik på nanometernivå, där enstaka fotoner kan genereras, manipuleras och detekteras med hjälp av nanostrukturer. Zwillers forskningsgrupp på KTH utvecklar ny teknik, baserad på kvantfysik, som möjliggör nya tillämpningar men samtidigt leder till nya grundläggande experiment inom kvantfysiken. Zwiller arbetar för närvarande med att koppla kvantprickar till atomer i syfte att utveckla hybridkvantsystem som kombinerar fördelarna med båda systemen. Förhoppningen är att kunna använda de nya verktygen kvantljuskällor och kvantdetektorer inom en rad olika områden, som biologisk avbildning och kvantkommunikation. Ett konkret exempel finns inom miljöövervakning, där forskarna hoppas kunna använda de nya kvantdetektorerna för att skapa kartor i realtid över olika luftföroreningar.

Se hans forskningspresentation i samband med prisutdelningen vid KVA.

Kontakt:
Epost: zwiller@kth.se 
Tel 073-765 22 00

Webbplats

https://kth.se/profile/zwiller

Anja-Verena Mudring

Anja Verena-Mudring
Foto: Privat

KEMI: Joniska vätskor som flytande magneter och gröna lösningsmedel

Anja-Verena Mudring, professor i fysikalisk materialkemi vid Stockholms universitet, född 1971, arbetar i sin forskning med joniska vätskor som smarta lösningsmedel och reaktanter för nya material med ökad energieffektivitet och energilagring.

Hon får priset för för syntes, studier och applikationer av joniska vätskor.

Fördelarna med joniska vätskor är många, vilket gör dem extra lämpliga att använda inom kemisk industri som ersättning för klassiska flyktiga, brandfarliga och ofta giftiga organiska lösningsmedel. De joniska vätskorna är flytande vid rumstemperatur, är helt brandsäkra och luktfria. Förutom att vara ett rent och miljövänligt lösningsmedel erbjuder joniska vätskor många fler möjligheter, särskilt inom materialkemin. Eftersom en jonisk vätska alltid utgörs av två delar, en positivt laddad katjon och en negativt laddad anjon, finns det möjlighet att genom variation av dessa styra vätskans egenskaper, såsom smältpunkt och viskositet. Detta utnyttjas, till exempel, vid deras användning som smörjmedel. Anja-Verena Mudring har lyckats utveckla användnings-området ytterligare genom att införliva en metallkatjon som en del av den joniska vätskan. Detta gör den joniska lösningen magnetisk. En egenskap som möjliggör magnetisk separation vid kemiska processer. Jonvätskorna kan också vara självlysande och användas som (utskrivbara) spårämnen och markörer eller i nya energieffektiva belysningsanordningar, så kallade ljusavgivande elektrokemiska celler (LECS). Det saknas fortfarande praktiska och ekonomiska sätt att generera väte till framtidens miljöbilar. Ett sätt att tillverka vätgas skulle kunna vara sönderdelning av vatten med solljus och lämpliga fotokatalysatorer, som skapas med hjälp av joniska vätskor.

Se hennes forskningspresentation i samband med prisutdelningen vid KVA.

Kontakt:
Epost anja-verena.mudring@mmk.su.se

Tel 072-836 53 21 

Webbplats 

http://www.su.se/profiles/amudr-1.284806

Claudia Köhler

Foto: Mattias Thelander

MOLEKYLÄR BIOLOGI: Förbättrar viktiga egenskaper hos grödor 

Claudia Köhler, professor i molekylärbiologi vid Sveriges lantbruksuniversitet i Uppsala, född 1971, fokuserar sin forskning kring artbildning hos växter och hur man genom ökad kunskap kan påverka exempelvis fröstorleken hos växter.

Hon får priset för sina banbrytande studier av genreglering, epigenetik och artbildning i växter med backtrav, Arabidopsis thaliana, som modellsystem.

Frövitan är en näringsrik vävnad som stimulerar växtembryots tillväxt, precis som moderkakan hos däggdjur. Den spelar en viktig roll för hur olika växter kan korsas utan att hindras av hybridiseringsbarriärer etablerade i själva frövitan. Claudia Köhler försöker identifiera vilka underliggande molekylära mekanismer som upprätthåller dessa hybridiseringsbarriärer.

Om man kan förstå varför vissa korsningar stoppas i frövitan kan man också förbättra agronomiskt viktiga egenskaper hos grödor. Överföringen av gynnsamma egenskaper från diploida förfäder till polyploida grödor är i mycket stor omfattning hindrad av hybridiseringsbarriärerna.

Majoriteten av våra vanliga grödor är polyploida, med mer än två kromosomuppsättningar, vilket gör det viktigt att utveckla strategier som förenklar förädlingen av dessa grödor.

Claudia Köhler är även intresserad av epigenetiska mekanismer och deras inverkan på växters utveckling och artbildning. Epigenetiska mekanismer orsakar förändringar i genaktiviteten utan att förändra DNA-sekvensen. Det går att jämföra med att en del gener bara är aktiva om de nedärvs från modern eller från fadern, ett fenomen som kallas ”genomisk imprinting”. Målet med den delen av forskningen är att förstå regleringen av, och funktionen hos, imprintade växtgener och att applicera denna kunskap för att förändra fröstorleken hos grödor.

 

Se hennes forskningspresentation i samband med prisutdelningen vid KVA.

Kontakt:
Epost:claudia.kohler@slu.se
Tel 018-67 33 13

Webbplats

http://kohlerlab.se/people/claudia-kohler

Thomas Juan, Medicin, UU

Portätt av Thomas Juan.
Portätt av Thomas Juan.

Thomas Juan får Göran Gustafssons pris i medicinsk vetenskap vid Uppsala universitet. Han är född 1990 i Frankrike och disputerade 2017 vid Université Côte d’Azur i Nice. Han gick sedan med i professor Didier Stainiers laboratorium vid Max Planck Institute for Heart and Lung Research för sin postdoc i Tyskland. Han identifierade flera mekanosensorproteiner som är viktiga för blodflödesavkänning och utvecklade genetiska system för att kontrollera hjärtats sammandragningar och mRNA-nivåer. Sedan 2024 har Thomas rekryterats till Uppsala universitet, Institutionen för immunologi, genetik och patologi, som biträdande lektor.

Thomas har varit aktiv inom området genome engineering sedan 2013, kort efter upptäckten av CRISPR/Cas9. Han har implementerat de flesta framstegen inom denna teknik i sin djurmodell, zebrafisken, i sina projekt. Han använder genetiska verktyg för att kontrollera protein- och mRNA-stabilitet för att undersöka kardiovaskulär utveckling under normala och patologiska förhållanden. Den rationella utformningen av dessa verktyg är tidskrävande och ger osäkra resultat.

Därför strävar han efter att utveckla metoder med hög genomströmning för att optimera biomolekyler av intresse för forskning och industriella tillämpningar. För detta ändamål utvecklar han en pipeline för riktad evolution i en ryggradsdjursmodell med hjälp av genteknik och nästa generations generatorer.

Outside the lab, Thomas is a hiking/fossil lover and enjoys spending time with his family; interests that are all highly compatible with life in Sweden.

Wojciech Michno, Medicin, UU

Wojciech Michno, får Göran Gustafssonpriset i medicinsk vetenskap vid Uppsala universitet. Wojciech är född 1992 i Krakow, Polen, och växte sedan upp i Örnsköldsvik i Västernorrland. Han tog sin doktorsexamen vid Göteborgs Universitet. Efter tre år som postdoktor bl.a. vid Stanford University återvände han till Sverige för att arbeta som biträdande universitetslektor vid Uppsala universitet.

Wojciech Michno beskriver sin forskning på följande sätt: Sedan jag var liten har jag varit intresserad av hjärnan och älskade samtidigt kemin. Därför bestämde jag mig för att försöka bedriva dessa två intressen parallellt. Detta både inom mina studier, och senare i min karriär som forskare. Nu fokuserar mitt arbete huvudsakligen på hur cellspecifika metabola förändringar bidrar till utveckling och progression av neurologiska sjukdomar, så som neurodegeneration och cancer. Tillsammans med min tvärvetenskapliga grupp skapar vi komplexa 3D cell-kultursystem som reflekterar human hjärncellulär miljö under utveckling, eller i dess ”vuxna” stadie.

Detta öppnar möjligheter för oss att studera cellspecifika interaktioner, i perspektiv av neurologiska utvecklingssjukdomar, samspel mellan tumörer och frisk hjärnvävnad, och t.o.m. hur olika stressfaktorer medverkar till neurodegeneration, som t.ex. vid Alzheimers sjukdom.

Samtidigt utvecklar vi också kemiska verktyg och metoder som kan appliceras för att bättre förstå de fenotypsändringar som är kopplade till dessa sjukdomar på en nivå av enskilda celler, och/eller enskilda metabola/enzymatiska processer. Vi strävar efter att behålla ”tidsaspekten” genom att använda oss av olika kemiska eller genetiska tidsmarkörer, och att inkludera ”spatialaspekten” via användning av konventionell mikroskopi eller kemisk avbildning. Det långsiktiga målet är att skapa förutsättningar för att bättre förstå vilken roll den cellulära mikromiljön har för utveckling av hjärnsjukdomar.

Utanför laboratoriet umgås Wojciech helst med familjen, gärna genom att ta långa promenader med familjens hund, bada på sommaren och åka skidor på vintern, men även löpning och annan träning. När tiden tillåter gillar Wojciech också att resa.  

Maciej Dendzik, Teknisk fysik, KTH

Porträtt av Maciej Dendzik.
Porträtt av Maciej Dendzik.

Maciej Dendzik får Göran Gustafssonpriset i teknisk fysik vid KTH. Maciej föddes 1989 i Polen, där han avlade sin grundutbildning i fysik och elektronik. Efter att ha fullföljt sin doktorsexamen i fysik vid Aarhus Universitet i Danmark, arbetade han som postdoktor vid Fritz Haber-institutet inom Max Planck-sällskapet i Tyskland. År 2019 flyttade Maciej till Avdelningen för Tillämpad Fysik vid KTH som forskare.

Maciej Dendzik beskriver sin forskning på följande sätt: Ultrasnabb elektrondynamik i atomtunna material hjälper oss att förstå hur elektroner rör sig och samverkar på extremt korta tidsskalor, i storleksordningen femtosekunder. Genom att använda avancerade lasertekniker kan vi ta ”ögonblicksbilder” av dessa processer och avslöja hur material reagerar på ljuspulser. Denna kunskap är avgörande för att utveckla snabbare och mer energieffektiva elektronik- och kvantteknologier.

Min forskning fokuserar på att använda ultrasnabba laserpulser för att studera hur elektroner beter sig i tvådimensionella material, såsom grafen och övergångsmetall-dikalkogenider. Dessa material har unika egenskaper som kan bana väg för revolutionerande tillämpningar inom datorteknik och kommunikation. Genom att undersöka hur elektroner interagerar med sin omgivning och hur energi flödar genom dessa system kan vi upptäcka nya sätt att designa högpresterande och strömsnåla elektroniska komponenter.

I framtiden planerar jag att utforska hur stapling och vridning av lager av 2D-material kan ge upphov till helt nya egenskaper, såsom okonventionell supraledning, där elektricitet kan flöda utan motstånd. Att förstå dessa fenomen kan bana väg för nästa generations teknologier och kanske även ge ny insikt i problemet med högtemperatursupraledning – en av de största olösta utmaningarna inom modern kondenserade materiens fysik.

På sin fritid tycker Maciej om att segla och att tillbringa tid utomhus med sin familj. Han är också en hängiven läsare av fantasylitteratur.

Leiting Zhang, Teknisk fysik, UU

porträtt av Leiting Zhang.
porträtt av Leiting Zhang.

Leiting Zhang får Göran Gustafssonpriset i Teknisk Fysik vid Uppsala universitet. Han är född 1989 i Kina och tog sin doktorsexamen i kemiteknik 2018 från The Hong Kong University of Science and Technology under gemensam handledning med Collège de France. Han tillbringade tre år som postdoktor vid Paul Scherrer institutet i Schweiz innan han började vid Uppsala universitet, först som postdoktor och därefter som biträdande universitetslektor (sedan 2023), båda vid Institutionen för kemi–Ångströmlaboratoriet.

Leiting beskriver sin forskning på följande sätt: Batterier är en väsentlig komponent i det moderna elektrifierade samhället och driver en mängd olika tekniker, från högpresterande smartphones och elbilar med lång räckvidd till storskaliga energilagringssystem. I takt med att den globala efterfrågan på effektiva, tillförlitliga och hållbara energilösningar fortsätter att öka har forskningen om nya batterikemier bortom den konventionella litiumjontekniken blivit allt viktigare. Strävan syftar till att bemöta kritiska utmaningar kopplade till hållbarhet, säkerhet, energidensitet och kostnadseffektivitet.

Min forskningsvision kretsar kring att föra samman grundläggande förståelse för batterikomponenter, särskilt elektroder, elektrolyter och fasskikt, med teknologiska och metodologiska genombrott för nästa generationens hållbara högenergibatterier. Specifikt omfattar min forskning tre huvudområden: online-sensning av batterihälsan, optimering av elektrolyter med robotassisterad hög genomströmningsdata och mekanistiska undersökningar av degraderingsprocesser inom batterier med både flytande och fasta elektrolyter.

Genom att integrera multidisciplinära tillvägagångssätt strävar jag efter att inte bara fördjupa vår förståelse av batteriers beteende på molekylär och fasskikt-baserad nivå, utan även omsätta vetskapen till praktiska, skalbara lösningar för avancerade energilagringstekniker.

På fritiden tycker Leiting om att fånga skönheten i vardagen genom fotografi och att uttrycka sina tankar och erfarenheter genom skrivande.

Kathlén Kohn, Teknisk fysik, KTH

Porträtt av Kathlen Kohn.
Porträtt av Kathlen Kohn.
Foto: Emma Burendahl

Kathlén Kohn får Göran Gustafssonpriset i teknisk fysik vid KTH. Hon föddes i Tyskland 1990, tog sin doktorsexamen vid TU Berlin 2018, var forskare vid ICERM (Brown University) och Universitetet i Oslo.  

Hon flyttade till KTH 2019, där hon nu är lektor vid matematiska institutionen.

Kathlén beskriver sin forskning på följande sätt: Jag utforskar den underliggande geometrin gömd i många datavetenskap- och AI-problem, med hjälp av algebraiska verktyg. Ett av mina huvudsakliga vetenskapliga intressen är att belysa varför djupinlärning fungerar bra. Med den inriktningen analyserar Kathlén systematiskt hur arkitektoniska val av ett neuralt nätverk påverkar geometrin av mängden funktioner som nätverket kan representera och hur denna geometri påverkar inlärningsprocessen. Hennes filosofi är att approximera godtyckliga neurala nätverk genom nätverk med polynomaktiveringsfunktioner och att till fullo förstå sådana polynomnätverk med hjälp av verktyg från algebraisk geometri. Hennes ambition är en komplett ordbok mellan arkitektoniska val, geometriska egenskaper och inlärningsprestanda, vilket leder till bättre informerad neurala nätverksdesign.

Förutom neurala nätverk arbetar Kathlén med 3D-rekonstruktion i datorseende. Hon studerar geometrin av rörliga kameror och utnyttjar detta för att formulera 3D-rekonstruktionsproblem via system av polynomekvationer som kan lösas effektivt.

Utanför vetenskapen tränar Kathlén akrobatik, spelar gitarr och piano, och utforskar världen med sin dotter.

Chao Xu, Teknisk fysik, UU

Chao Xu får Göran Gustafssonpriset i teknisk fysik vid Uppsala universitet. Han är född 1987 i Kina. Han studerade materialkemi på Stockholms universitet och erhöll sin doktorsexamen 2015. Efter det fortsatte han sin forskning som postdoktor vid Stockholms universitet och sedan Uppsala universitet. Sedan 2018 har han lett oberoende forskning vid Uppsala universitet.

Chao Xu beskriver sin forskning så här: Porösa material med justerbar porstorlek och hög ytarea spelar en avgörande roll i olika industriella processer. I min forskning fokuserar jag på den gröna syntesen, teknikutvecklingen och tillämpningsutvecklingen av olika porösa material, inklusive metall-organiska ramverk, porösa organiska polymerer och poröst kol. Vi har utvecklat en kostnadseffektiv och skalbar metod för att syntetisera olika porösa organiska polymerer med hjälp av gröna lösningsmedel under lågtemperaturförhållanden. Dessutom har användningen av nanoteknik, med hjälp av hållbara cellulosa-nanofibrer, möjliggjort bearbetning av olika porösa material till fristående nanokompositer.

De erhållna nanokompositerna visar stor potential för en mångsidig användning, inklusive energiskördning och lagring, kolupptag, återvinning av ädelmetaller, membranseparation och heterogen katalys.

På sin fritid spelar Chao gärna bordtennis och fotboll.