Henrik Ehrsson

Henrik Ehrsson
Foto:Mikael Wallerstedt

MEDICIN: Kroppsillusioner som hjälper oss förstå hjärnan

Henrik Ehrsson, professor i kognitiv neurovetenskap vid Karolinska Institutet, född 1972, använder sig av en rad sofistikerade metoder i sin forskning som befinner sig i gränslandet mellan neurovetenskap och psykologi.

Han får priset för sina grundläggande och eleganta studier av funktioner i hjärnan kopplade till människans uppfattning av den egna kroppen.

I en mycket uppmärksammad serie experiment har Henrik Ehrsson visat hur man kan framkalla illusioner av att vara utanför sin kropp (”utanförkroppen-illusionen”) eller uppleva en annan persons kropp som sin egen (”kroppsbytes-illusionen”). Frågan som Henrik Ehrsson ställer är hur hjärnan integrerar sinnesintryck från ögon, hud och muskler för att skapa en inre modell av den egna kroppen i rummet. På ett uppfinningsrikt sätt kombinerar han nyupptäckta kroppsillusioner med mätningar av hjärnans aktivitet.

Ehrssons resultat är viktiga för nya tekniska applikationer som bygger på principen att projicera kroppstillhörighetskänsla på konstgjorda kroppsdelar: en ny typ av överarmsprotes som känns precis som en riktig hand, datorgenererade virtuella kroppar som en totalförlamad person kan lära sig styra och uppleva som del av sig själv, samt nya metoder att styra människo-liknande robotar. Inom psykiatrin öppnar rönen upp för helt nya sätt att tänka kring och undersöka de omfattande störningar i kroppsuppfattning och jagkänsla som patienter med exempelvis schizofreni uppvisar.

Se hans forskningspresentation i samband med prisutdelningen vid KVA.

Kontakt:
Epost henrik.ehrsson@ki.se 
Tel 08-524 872 31

Webbplats

www.ehrssonlab.se/henrik.php 

Val Zwiller

Wal Zwiller
Foto: Kristina Hedtjärn

FYSIK: Kvantoptik på nanoskala

Val Zwiller, professor i tillämpad fysik vid KTH, född 1971, kombinerar i sin forskning optik och nanoteknologi. I hans avancerade labbutrustning finns framtidens tekniska verktyg som kvantljuskällor och kvantdetektorer

Han får priset för sin innovativa forskning inom kvantoptik och nanofysik som kan leda fram till djupare förståelse av den fundamentala kvantfysiken och viktiga öppningar mot framtida kvantkommunikation.

Val Zwiller kom till KTH 2015 för att bygga upp en ny forskargrupp på området kvantfysik med nanostrukturer. Han hade då bott tio år i Holland men är ursprungligen från Frankrike. I sin doktorsavhandling vid Lunds universitet hade han visat att nanostrukturer kan användas för att generera enstaka fotoner, vilket gör det möjligt att kontrollera ljus på den mest grundläggande nivån. Hans nuvarande forskning är inriktad på mer avancerad kvantoptik på nanometernivå, där enstaka fotoner kan genereras, manipuleras och detekteras med hjälp av nanostrukturer. Zwillers forskningsgrupp på KTH utvecklar ny teknik, baserad på kvantfysik, som möjliggör nya tillämpningar men samtidigt leder till nya grundläggande experiment inom kvantfysiken. Zwiller arbetar för närvarande med att koppla kvantprickar till atomer i syfte att utveckla hybridkvantsystem som kombinerar fördelarna med båda systemen. Förhoppningen är att kunna använda de nya verktygen kvantljuskällor och kvantdetektorer inom en rad olika områden, som biologisk avbildning och kvantkommunikation. Ett konkret exempel finns inom miljöövervakning, där forskarna hoppas kunna använda de nya kvantdetektorerna för att skapa kartor i realtid över olika luftföroreningar.

Se hans forskningspresentation i samband med prisutdelningen vid KVA.

Kontakt:
Epost: zwiller@kth.se 
Tel 073-765 22 00

Webbplats

https://kth.se/profile/zwiller

Anja-Verena Mudring

Anja Verena-Mudring
Foto: Privat

KEMI: Joniska vätskor som flytande magneter och gröna lösningsmedel

Anja-Verena Mudring, professor i fysikalisk materialkemi vid Stockholms universitet, född 1971, arbetar i sin forskning med joniska vätskor som smarta lösningsmedel och reaktanter för nya material med ökad energieffektivitet och energilagring.

Hon får priset för för syntes, studier och applikationer av joniska vätskor.

Fördelarna med joniska vätskor är många, vilket gör dem extra lämpliga att använda inom kemisk industri som ersättning för klassiska flyktiga, brandfarliga och ofta giftiga organiska lösningsmedel. De joniska vätskorna är flytande vid rumstemperatur, är helt brandsäkra och luktfria. Förutom att vara ett rent och miljövänligt lösningsmedel erbjuder joniska vätskor många fler möjligheter, särskilt inom materialkemin. Eftersom en jonisk vätska alltid utgörs av två delar, en positivt laddad katjon och en negativt laddad anjon, finns det möjlighet att genom variation av dessa styra vätskans egenskaper, såsom smältpunkt och viskositet. Detta utnyttjas, till exempel, vid deras användning som smörjmedel. Anja-Verena Mudring har lyckats utveckla användnings-området ytterligare genom att införliva en metallkatjon som en del av den joniska vätskan. Detta gör den joniska lösningen magnetisk. En egenskap som möjliggör magnetisk separation vid kemiska processer. Jonvätskorna kan också vara självlysande och användas som (utskrivbara) spårämnen och markörer eller i nya energieffektiva belysningsanordningar, så kallade ljusavgivande elektrokemiska celler (LECS). Det saknas fortfarande praktiska och ekonomiska sätt att generera väte till framtidens miljöbilar. Ett sätt att tillverka vätgas skulle kunna vara sönderdelning av vatten med solljus och lämpliga fotokatalysatorer, som skapas med hjälp av joniska vätskor.

Se hennes forskningspresentation i samband med prisutdelningen vid KVA.

Kontakt:
Epost anja-verena.mudring@mmk.su.se

Tel 072-836 53 21 

Webbplats 

http://www.su.se/profiles/amudr-1.284806

Claudia Köhler

Foto: Mattias Thelander

MOLEKYLÄR BIOLOGI: Förbättrar viktiga egenskaper hos grödor 

Claudia Köhler, professor i molekylärbiologi vid Sveriges lantbruksuniversitet i Uppsala, född 1971, fokuserar sin forskning kring artbildning hos växter och hur man genom ökad kunskap kan påverka exempelvis fröstorleken hos växter.

Hon får priset för sina banbrytande studier av genreglering, epigenetik och artbildning i växter med backtrav, Arabidopsis thaliana, som modellsystem.

Frövitan är en näringsrik vävnad som stimulerar växtembryots tillväxt, precis som moderkakan hos däggdjur. Den spelar en viktig roll för hur olika växter kan korsas utan att hindras av hybridiseringsbarriärer etablerade i själva frövitan. Claudia Köhler försöker identifiera vilka underliggande molekylära mekanismer som upprätthåller dessa hybridiseringsbarriärer.

Om man kan förstå varför vissa korsningar stoppas i frövitan kan man också förbättra agronomiskt viktiga egenskaper hos grödor. Överföringen av gynnsamma egenskaper från diploida förfäder till polyploida grödor är i mycket stor omfattning hindrad av hybridiseringsbarriärerna.

Majoriteten av våra vanliga grödor är polyploida, med mer än två kromosomuppsättningar, vilket gör det viktigt att utveckla strategier som förenklar förädlingen av dessa grödor.

Claudia Köhler är även intresserad av epigenetiska mekanismer och deras inverkan på växters utveckling och artbildning. Epigenetiska mekanismer orsakar förändringar i genaktiviteten utan att förändra DNA-sekvensen. Det går att jämföra med att en del gener bara är aktiva om de nedärvs från modern eller från fadern, ett fenomen som kallas ”genomisk imprinting”. Målet med den delen av forskningen är att förstå regleringen av, och funktionen hos, imprintade växtgener och att applicera denna kunskap för att förändra fröstorleken hos grödor.

 

Se hennes forskningspresentation i samband med prisutdelningen vid KVA.

Kontakt:
Epost:claudia.kohler@slu.se
Tel 018-67 33 13

Webbplats

http://kohlerlab.se/people/claudia-kohler

Wojciech Michno, Medicin, UU

Wojciech Michno, får Göran Gustafssonpriset i medicinsk vetenskap vid Uppsala universitet. Wojciech är född 1992 i Krakow, Polen, och växte sedan upp i Örnsköldsvik i Västernorrland. Han tog sin doktorsexamen vid Göteborgs Universitet. Efter tre år som postdoktor bl.a. vid Stanford University återvände han till Sverige för att arbeta som biträdande universitetslektor vid Uppsala universitet.

Wojciech Michno beskriver sin forskning på följande sätt: Sedan jag var liten har jag varit intresserad av hjärnan och älskade samtidigt kemin. Därför bestämde jag mig för att försöka bedriva dessa två intressen parallellt. Detta både inom mina studier, och senare i min karriär som forskare. Nu fokuserar mitt arbete huvudsakligen på hur cellspecifika metabola förändringar bidrar till utveckling och progression av neurologiska sjukdomar, så som neurodegeneration och cancer. Tillsammans med min tvärvetenskapliga grupp skapar vi komplexa 3D cell-kultursystem som reflekterar human hjärncellulär miljö under utveckling, eller i dess ”vuxna” stadie.

Detta öppnar möjligheter för oss att studera cellspecifika interaktioner, i perspektiv av neurologiska utvecklingssjukdomar, samspel mellan tumörer och frisk hjärnvävnad, och t.o.m. hur olika stressfaktorer medverkar till neurodegeneration, som t.ex. vid Alzheimers sjukdom.

Samtidigt utvecklar vi också kemiska verktyg och metoder som kan appliceras för att bättre förstå de fenotypsändringar som är kopplade till dessa sjukdomar på en nivå av enskilda celler, och/eller enskilda metabola/enzymatiska processer. Vi strävar efter att behålla ”tidsaspekten” genom att använda oss av olika kemiska eller genetiska tidsmarkörer, och att inkludera ”spatialaspekten” via användning av konventionell mikroskopi eller kemisk avbildning. Det långsiktiga målet är att skapa förutsättningar för att bättre förstå vilken roll den cellulära mikromiljön har för utveckling av hjärnsjukdomar.

Utanför laboratoriet umgås Wojciech helst med familjen, gärna genom att ta långa promenader med familjens hund, bada på sommaren och åka skidor på vintern, men även löpning och annan träning. När tiden tillåter gillar Wojciech också att resa.  

Chao Xu, Teknisk fysik, UU

Chao Xu får Göran Gustafssonpriset i teknisk fysik vid Uppsala universitet. Han är född 1987 i Kina. Han studerade materialkemi på Stockholms universitet och erhöll sin doktorsexamen 2015. Efter det fortsatte han sin forskning som postdoktor vid Stockholms universitet och sedan Uppsala universitet. Sedan 2018 har han lett oberoende forskning vid Uppsala universitet.

Chao Xu beskriver sin forskning så här: Porösa material med justerbar porstorlek och hög ytarea spelar en avgörande roll i olika industriella processer. I min forskning fokuserar jag på den gröna syntesen, teknikutvecklingen och tillämpningsutvecklingen av olika porösa material, inklusive metall-organiska ramverk, porösa organiska polymerer och poröst kol. Vi har utvecklat en kostnadseffektiv och skalbar metod för att syntetisera olika porösa organiska polymerer med hjälp av gröna lösningsmedel under lågtemperaturförhållanden. Dessutom har användningen av nanoteknik, med hjälp av hållbara cellulosa-nanofibrer, möjliggjort bearbetning av olika porösa material till fristående nanokompositer.

De erhållna nanokompositerna visar stor potential för en mångsidig användning, inklusive energiskördning och lagring, kolupptag, återvinning av ädelmetaller, membranseparation och heterogen katalys.

På sin fritid spelar Chao gärna bordtennis och fotboll.

Vaishali Adya, Teknisk fysik, KTH

Vaishali Adya, Teknisk fysik, KTH

Vaishali Adya får Göran Gustafssonpriset i teknisk fysik vid KTH. Hon föddes 1990 i Indien där hon erhöll sina kandidat- och mastersexamina. Hon tog sin doktorsexamen 2018 vid Max Planck Institute for Gravitational Physics, Albert Einstein Institute, i Hannover, Tyskland. Efter en postdoktoranställning vid Australian National University i Canberra, Australia, flyttade hon till KTH, Sverige som forskare och är nu biträdande lektor.

Vaishali beskriver sin forskning på följande sätt: Om man vill mäta svaga signaler, t.ex. gravitationsvågor som böljar genom rymdtiden eller svaga signaturer från biologiska molekyler med hög precision, krävs avancerade tekniker för att uppnå tillräcklig signal-brus-förhållande. En sådan teknik är användningen av kvanttillstånd i ljus som kallas ”klämt ljus” (squeezed light). Med andra ord kan vi minska osäkerheten i en av egenskaperna hos det ljus som används, till exempel dess amplitud eller fas.

Detta klämda ljus tillstånd kan också användas för att producera sammanflätade tillstånd som är en viktig resurs för det snabbt växande området för kvantnyckeldistribution med kontinuerliga variabler.

För närvarande uppnås de högsta nivåerna av klämt ljus genom att en icke-linjär kristall med periodiskt varierande poler bäddas in i en optisk kavitet, vilket kräver komplexa återkopplings- och stabiliseringstekniker. Genom detta projekt kommer jag att dra nytta av min expertis inom reglersystem, laserinterferometri, kvantoptik och leda vägen inom design och implementering av kaskadkopplade, integrerade klämda ljuskällor baserade på vågledare med minskat fotavtryck och komplex implementering. Den klämda ljuskällan kommer att implementeras i två banbrytande experiment: som en kontinuerlig variabel sammanflätningskälla för kvantkommunikation och även i kvantförbättrade biosensorexperiment för att minska bakgrundsbruset i mätningen av koncentrationsberoende förändringar i brytningsindex för olika prover.

På sin fritid ägnar sig Vaishali åt experimentell bakning och promenader i naturen.

Liam Solus, Teknisk fysik, KTH

Liam Solus får Göran Gustafssonpriset i teknisk fysik vid KTH. Liam föddes 1989 i USA, där han tog sin grundexamen 2011 i matematik vid Oberlin College. Sin doktorsexamen fick han 2015 vid University of Kentucky. Han flyttade till Sverige 2016 som postdoktor vid KTH där han nu är biträdande lektor.

Liam Solus beskriver sin forskning på följande sätt: Min inspiration och motivation som forskare kommer från att lösa problem som skapar oväntade och användbara broar mellan olika områden. I detta sammanhang fokuserar min forskning på kombinatorik och dess tillämpningar. Kombinatorik är matematikområdet som studerar egenskaperna hos objekt definierade på ändliga mängder, såsom nätverk, som används i en mängd olika tillämpade vetenskaper för att representera kopplingar mellan olika enheter i komplexa system. Samtidigt använder kombinatorik ofta verktyg från algebra och geometri, vilket genererar strukturer som kan manipuleras för att avslöja nya och användbara insikter. Summan av dessa delar är ett tvärvetenskapligt forskningsområde där man kan använda algebraiska och geometriska metoder för att studera nätverksstruktur med tillämpningar på problem i det moderna samhället. Inom detta utrymme har min forskning två centrala mål: Det första är att använda de algebraiska och geometriska perspektiven på kombinatorik för att ge lösningar på tillämpade problem.

Det andra är att studera hur dessa tillämpningar motiverar ny matematisk teori. För närvarande är mitt fokus på situationer där nätverket representerar kausala relationer, där algebra, geometri och kombinatorik hjälper oss att lära oss mer om komplexa kausala system i sammanhang med maskininlärning och fysik.

P fritiden gillar Liam att åka skateboard, surfa och hålla sig aktiv med andra sporter.

Gemma Mestres, Teknisk fysik, UU

Gemma Mestres får Göran Gustafssonpriset i teknisk fysik vid Uppsala universitet. Hon är född 1984 och uppvuxen i Barcelona där hon tog sin grundexamen 2007 i kemi vid Universitat Autònoma de Barcelona. Sin doktorsexamen fick hon 2012 vid Universitat Politècnica de Catalunya, Barcelona, Spanien.

Gemma Mestres beskriver sin forskning så här: Tillvägagångssättet för att utveckla biomaterial för reparation av ben (till exempel tandimplantat eller syntetiska bentransplantat) har omdefinierats under de senaste decennierna. Trenden har varit att gå från en teknisk design som helt enkelt skulle återställa benets mekaniska egenskaper till biomaterial som kan replikera benets fysikalisk-kemiska och biologiska egenskaper, vilket förbättrar benregenerering. Trots den enorma utvecklingen av biomaterial har en mycket liten del av dem lett fram till en faktisk produkt som kan tillämpas på patienter. Detta kan indirekt tillskrivas bristen på korrelation mellan de metoderna som används för att bedöma de biologiska egenskaperna hos biomaterial, nämligen cellodling (in vitro-analyser), djurförsök (in vivo-studier) och kliniska prövningar (med frivilliga patienter). Detta leder till en iterativ, lång och ofta oöverkomligt dyr process som medför att de allra flesta försök att skapa biomaterial inte blir av. Jag drivs av att utveckla nya forskningsverktyg för att överbrygga klyftan mellan in vitro– och in vivo-studier, vilket kan öka biomaterialens framgångsgrad i kliniska prövningar framöver. För att uppnå detta integrerar jag benreparationsbiomaterial i mikrofluidplattformar, där benets biologiska och fysiska stimuli imiteras. Denna testmetod kommer att leda till tillförlitliga och tids- och kostnadseffektiva studier, vilket stimulerar tillväxten av biomaterial till marknaden.

Utanför laboratoriet säger Gemma att hon älskar att åka på äventyr med familjen för att upptäcka nya områden och nya kulturer. Utöver det, tycker hon väldigt mycket om att umgås och prata med sina närmsta vänner.

Mats Persson, Teknisk fysik, KTH

Mats Persson får Göran Gustafssonpriset i Teknisk Fysik vid KTH. Mats är född 1987 i Västerhaninge utanför Stockholm och tog civilingenjörsexamen i teknisk fysik vid KTH 2011 och doktorsexamen i fysik vid KTH år 2016. Därefter tillbringade han tre år som postdoktor i USA, först vid Stanford University i Kalifornien och sedan, med stöd av ett Marie Curie-stipendium, vid General Electric Research Center i Niskayuna, NY, USA. Han återvände till KTH som biträdande lektor år 2020.  För att kommersialisera sin forskning var han under sin doktorandtid med och startade ett företag, Prismatic Sensors AB, som senare köptes upp av GE Healthcare.

Mats Persson beskriver sin forskning så här: Jag forskar om datortomografi, en teknik där patienten genomlyses av röntgenstrålar från olika riktningar så att en tredimensionell bild av kroppen kan rekonstrueras med en dator. Under doktorandtiden var jag med och utvecklade en fotonräknande röntgendetektor av kisel som kan ge bättre datortomografibilder än de detektorer som används idag. Till dess fördelar hör inte bara högre upplösning och lägre brus i bilderna utan också förmågan att uppmäta energin hos varje enskild foton, vilket ger bättre möjligheter att identifiera atomsammansättningen i olika vävnader.

Min nuvarande forskning är inriktad på att förstå hur den nya detektortekniken skall utnyttjas bäst. Jag utvecklar därför metoder för att utvärdera prestanda för fotonräknande detektorer och algoritmer för att säkerställa att uppmätta data används för att skapa bilder med bästa möjliga mätnoggrannhet och diagnostiska bildkvalitet. En ny och mycket lovande teknik som jag arbetar med för närvarande bygger på att använda djupa neurala nätverk som tränas på stora mängder bilddata och sedan snabbt kan generera bilder med drastiskt förbättrad kvalitet. Den fotonräknande datortomografitekniken, som kan vara i regelbundet bruk inom vården redan inom några år, har potential att leda till såväl reducerad stråldos som förbättrad diagnos av ett flertal sjukdomar som stroke, hjärt-kärlsjukdomar och cancer.

På fritiden tycker jag om att vara ute i naturen, gärna på längdskidor om det är vinter.